
TR0173 (v4.0) April 6, 2009 1

C/C++ Language Reference

Summary
Technical Reference
TR0173 (v4.0) April 06, 2009

This comprehensive reference provides a detailed overview of the C/C++ language
and describes each of the standard C/C++ keywords (reserved words) and each of
the standard C and C++ library functions. In addition, processor specific keywords
and intrinsic functions are described. These do not belong to the standard C
language, but are supported by the compilers for certain processors.

C/C++ Operator Precedence
The operators at the top of this list are evaluated first.

Precedence Operator Description Example Associativity

1 :: Scoping operator Class::age = 2; none

2

()
()
()
[]
->
.
++
--
const_cast
dynamic_cast
static_cast
reinterpret_cast
typeid

Grouping operator
Function call
Member initialization
Array access
Member access from a pointer
Member access from an object
Post-increment
Post-decrement
Special cast
Special cast
Special cast
Special cast
Run-time type information

(a + b) / 4;
isdigit('1');
c_tor(int x, int y) : _x(x), _y(y*10){};
array[4] = 2;
ptr->age = 34;
obj.age = 34;
for(i = 0; i < 10; i++) ...
for(i = 10; i > 0; i--) ...
const_cast<type_to>(type_from);
dynamic_cast<type_to>(type_from);
static_cast<type_to>(type_from);
reinterpret_cast<type_to>(type_from);
typeid(var).name();
typeid(type).name();

left to right

3

!
~
++
--
-
+
*
&
new
new []
delete
delete []
(type)
sizeof

Logical negation
Bitwise complement
Pre-increment
Pre-decrement
Unary minus
Unary plus
Dereference
Address of
Dynamic memory allocation
Dynamic memory allocation of array
Deallocate memory
Deallocate memory of array
Cast to a given type
Return size in bytes

if(!done) ...
flags = ~flags;
for(i = 0; i < 10; ++i) ...
for(i = 10; i > 0; --i) ...
int i = -1;
int i = +1;
data = *ptr;
address = &obj;
long *pVar = new long;
long *array = new long[n];
delete pVar;
delete [] array;
int i = (int) floatNum;
int size = sizeof(floatNum);

right to left

4
->*
.*

Member pointer selector
Member object selector

ptr->*var = 24;
obj.*var = 24;

left to right

5
*
/
%

Multiplication
Division
Modulus

int i = 2 * 4;
float f = 10 / 3;
int rem = 4 % 3;

left to right

C/C++ Language Reference

2 TR0173 (v4.0) April 6, 2009

6
+
-

Addition
Subtraction

int i = 2 + 3;
int i = 5 - 1;

left to right

7
<<
>>

Bitwise shift left
Bitwise shift right

int flags = 33 << 1;
int flags = 33 >> 1;

left to right

8

<
<=
>
>=

Comparison less-than
Comparison less-than-or-equal-to
Comparison greater-than
Comparison geater-than-or-equal-to

if(i < 42) ...
if(i <= 42) ...
if(i > 42) ...
if(i >= 42) ...

left to right

9
==
!=

Comparison equal-to
Comparison not-equal-to

if(i == 42) ...
if(i != 42) ...

left to right

10 & Bitwise AND flags = flags & 42; left to right

11 ^ Bitwise exclusive OR flags = flags ^ 42; left to right

12 | Bitwise inclusive (normal) OR flags = flags | 42; left to right

13 && Logical AND if(conditionA && conditionB) ... left to right

14 || Logical OR if(conditionA || conditionB) ... left to right

15 ? : Ternary conditional (if-then-else) int i = (a > b) ? a : b; right to left

16

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

Assignment operator
Increment and assign
Decrement and assign
Multiply and assign
Divide and assign
Modulo and assign
Bitwise AND and assign
Bitwise exclusive OR and assign
Bitwise inclusive OR and assign
Bitwise shift left and assign
Bitwise shift right and assign

int a = b;
a += 3;
b -= 4;
a *= 5;
a /= 2;
a %= 3;
flags &= new_flags;
flags ^= new_flags;
flags |= new_flags;
flags <<= 2;
flags >>= 2;

right to left

17 throw Throw exception throw EClass("Message"); left to right

18 , Sequential evaluation operator for(i = 0, j = 0; i < 10; i++, j++) ... left to right

One important aspect of C/C++ that is related to operator precedence is the order of evaluation and the order of side effects
in expressions. In some circumstances, the order in which things happen is not defined. For example, consider the following
code:
 float x = 1;
 x = x / ++x;

The value of x is not guaranteed to be consistent across different compilers, because it is not clear whether the computer
should evaluate the left or the right side of the division first. Depending on which side is evaluated first, x could take a different
value.
Furthermore, while ++x evaluates to x+1, the side effect of actually storing that new value in x could happen at different times,
resulting in different values for x.

The bottom line is that expressions like the one above are horribly ambiguous and should be avoided at all costs. When in
doubt, break a single ambiguous expression into multiple expressions to ensure that the order of evaluation is correct.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 3

C/C++ Data Types
There are six data types for C: void, _Bool, char, int, float, and double.

Type Description

void associated with no data type

_Bool boolean

char character

int integer

float floating-point number

double double precision floating-point number

C++ defines two more: bool and wchar_t.

Type Description

bool Boolean value, true or false

wchar_t wide character

Type Modifiers
Several of these types can be modified using signed, unsigned, short, long, and long long. When one of these type modifiers
is used by itself, a data type of int is assumed. A list of possible data types follows:

char

unsigned char

signed char

int

unsigned int

signed int

short int

unsigned short int

signed short int

long int

signed long int

unsigned long int

long long int

signed long long int

unsigned long long int

float

double

long double

C/C++ Language Reference

4 TR0173 (v4.0) April 6, 2009

Type Sizes and Ranges
The size and range of any data type is compiler and architecture dependent. The "cfloat" (or "float.h") header file often defines
minimum and maximum values for the various data types. You can use the sizeof operator to determine the size of any data
type, in bytes. However, many architectures implement data types of a standard size. ints and floats are often 32-bit, chars 8-
bit, and doubles are usually 64-bit. bools are often implemented as 8-bit data types.

C Data Types (ARM)
The TASKING C compiler for the ARM architecture (carm) supports the following fundamental data types:

Type C Type Size (bit) Align (bit) Limits

Boolean _Bool 8 8 0 or 1

Character
char
signed char 8 8 -27 .. 27-1

 unsigned char 8 8 0 .. 28-1

Integral
short
signed short 16 16 -215 .. 215-1

 unsigned short 16 16 0 .. 216-1

 enum 32 32 -231 .. 231-1

int
signed int
long
signed long

32 32 -231 .. 231-1

unsigned int
unsigned long 32 32 0 .. 232-1

long long
signed long long 64 32 -263 .. 263-1

 unsigned long long 64 64 0 .. 264-1

Pointer pointer to function or data 32 32 0 .. 232-1

Floating-Point float 32 32
-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

double
long double 64 64

-1.798E+308 .. -2.225E-308
2.225E-308 .. 1.798E+308

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 5

C Data Types (MicroBlaze)
The TASKING C compiler for the MicroBlaze architecture (cmb) supports the following fundamental data types:

Type C Type Size (bit) Align (bit) Limits

Boolean _Bool 8 8 0 or 1

Character
char
signed char 8 8 -27 .. 27-1

 unsigned char 8 8 0 .. 28-1

Integral
short
signed short 16 16 -215 .. 215-1

 unsigned short 16 16 0 .. 216-1

 enum
8
16
32

8
16
32

-27 .. 27-1
-215 .. 215-1
-231 .. 231-1

int
signed int
long
signed long

32 32 -231 .. 231-1

unsigned int
unsigned long 32 32 0 .. 232-1

long long
signed long long 64 32 -263 .. 263-1

 unsigned long long 64 32 0 .. 264-1

Pointer pointer to function or data 32 32 0 .. 232-1

Floating-Point float 32 32
-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

double
long double 64 32

-1.798E+308 .. -2.225E-308
2.225E-308 .. 1.798E+308

When you use the enum type, the compiler will use the smallest sufficient type (char, short or int), unless you use compiler
option --integer-enumeration (always use integers for enumeration).

C/C++ Language Reference

6 TR0173 (v4.0) April 6, 2009

C Data Types (Nios II)
The TASKING C compiler for the Nios II architecture (cnios) supports the following fundamental data types:

Type C Type Size (bit) Align (bit) Limits

Boolean _Bool 8 8 0 or 1

Character
char
signed char 8 8 -27 .. 27-1

 unsigned char 8 8 0 .. 28-1

Integral
short
signed short 16 16 -215 .. 215-1

 unsigned short 16 16 0 .. 216-1

 enum 32 32 -231 .. 231-1

int
signed int
long
signed long

32 32 -231 .. 231-1

unsigned int
unsigned long 32 32 0 .. 232-1

long long
signed long long 64 32 -263 .. 263-1

 unsigned long long 64 32 0 .. 264-1

Pointer pointer to function or data 32 32 0 .. 232-1

Floating-Point float 32 32
-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

double
long double 64 32

-1.798E+308 .. -2.225E-308
2.225E-308 .. 1.798E+308

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 7

C Data Types (PowerPC)
The TASKING C compiler for the PowerPC architecture (cppc) supports the following fundamental data types:

Type C Type Size (bit) Align (bit) Limits

Boolean _Bool 8 8 0 or 1

Character
char
signed char 8 8 -27 .. 27-1

 unsigned char 8 8 0 .. 28-1

Integral
short
signed short 16 16 -215 .. 215-1

 unsigned short 16 16 0 .. 216-1

 enum 32 32 -231 .. 231-1

int
signed int
long
signed long

32 32 -231 .. 231-1

unsigned int
unsigned long 32 32 0 .. 232-1

long long
signed long long 64 64 -263 .. 263-1

 unsigned long long 64 64 0 .. 264-1

Pointer pointer to function or data 32 32 0 .. 232-1

Floating-Point float 32 32
-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

double
long double 64 64

-1.798E+308 .. -2.225E-308
2.225E-308 .. 1.798E+308

C/C++ Language Reference

8 TR0173 (v4.0) April 6, 2009

C Data Types (TSK3000)
The TASKING C compiler for the TSK3000 architecture (c3000) supports the following fundamental data types:

Type C Type Size (bit) Align (bit) Limits

Boolean _Bool 8 8 0 or 1

Character
char
signed char 8 8 -27 .. 27-1

 unsigned char 8 8 0 .. 28-1

Integral
short
signed short 16 16 -215 .. 215-1

 unsigned short 16 16 0 .. 216-1

 enum 32 32 -231 .. 231-1

int
signed int
long
signed long

32 32 -231 .. 231-1

unsigned int
unsigned long 32 32 0 .. 232-1

long long
signed long long 64 32 -263 .. 263-1

 unsigned long long 64 32 0 .. 264-1

Pointer pointer to function or data 32 32 0 .. 232-1

Floating-Point float 32 32
-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

double
long double 64 32

-1.798E+308 .. -2.225E-308
2.225E-308 .. 1.798E+308

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 9

C Data Types (TSK51x/TSK52x)
The TASKING C compiler for the TSK51x/TSK52x architecture (c51) supports the following data types:

Type C Type Size (bit) Align (bit) Limits

Bit __bit 1 1 0 or 1

Boolean _Bool 1 8 0 or 1

Character
char
signed char 8 8 -27 .. 27-1

 unsigned char 8 8 0 .. 28-1

Integral

short
signed short
int
signed int

16 8 -215 .. 215-1

 enum
1
8
16

1
8
8

0 or 1
-27 .. 27-1
-215 .. 215-1

unsigned short
unsigned int 16 8 0 .. 216-1

long
signed long 32 8 -231 .. 231-1

 unsigned long 32 8 0 .. 232-1

long long
signed long long 32 8 -231 .. 231-1

 unsigned long long 32 8 0 .. 232-1

Pointer
pointer to __sfr, __bsfr, __data,
__bdata, __idata, __pdata or __bit

8 8 0 .. 28-1

 pointer to function, __xdata or __rom 16 8 0 .. 216-1

Floating-Point float 32 8
-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

double
long double 32 8

-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

The double and long double types are always treated as float.
When you use the enum type, the compiler will use the smallest sufficient type (__bit, char, int), unless you use compiler
option --integer-enumeration (always use 16-bit integers for enumeration).

C/C++ Language Reference

10 TR0173 (v4.0) April 6, 2009

C Data Types (TSK80x)
The TASKING C compiler for the TSK80x architecture (cz80) supports the following fundamental data types:

Type C Type Size (bit) Align (bit) Limits

Boolean _Bool 1 8 0 or 1

Character
char
signed char 8 8 -27 .. 27-1

 unsigned char 8 8 0 .. 28-1

Integral

short
signed short
int
signed int

16 8 -215 .. 215-1

 enum 8
16

8
8

-27 .. 27-1
-215 .. 215-1

unsigned short
unsigned int 16 8 0 .. 216-1

long
signed long 32 8 -231 .. 231-1

 unsigned long 32 8 0 .. 232-1

long long
signed long long 32 8 -231 .. 231-1

 unsigned long long 32 8 0 .. 232-1

Pointer pointer to __sfr8 8 8 0 .. 28-1

 pointer __sfr, data or function 16 8 0 .. 216-1

Floating-Point float 32 8
-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

double
long double 32 8

-3.402E+38 .. -1.175E-38
1.175E-38 .. 3.402E+38

The long long types are treated as long.
The double and long double types are always treated as float.
When you use the enum type, the compiler will use the smallest sufficient type (char or int), unless you use compiler option -
-integer-enumeration (always use 16-bit integers for enumeration).

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 11

Memory Types
Depending on the target for which you are writing C source code, several memories or memory types may be available for
placing data objects. Memory types can either be physically different memories or can be defined ranges in a single memory.

If more than one memory type is available for the target, you can specify in which (part of) the memory a variable must be
placed. You can do this with memory type qualifiers. Depending on the target and its available memory types, several
memory type qualifiers are supported.

Memory Types (MicroBlaze)

Qualifier Description

__no_sdata Direct addressable RAM

__sdata Direct short (near) addressable RAM
(Small data, 64k)

__sfr (For compatibilty with special function registers)

__rom
Data defined with this qualifier is placed in ROM. This section is
excluded from automatic initialization by the startup code.
__rom always implies the type qualifier const.

By default, all data objects smaller than 4 bytes are placed in small data (sdata) sections. With the __no_sdata and __sdata
keywords, you can overrule this default and either force larger data objects in sdata or prevent smaller data objects from being
placed in sdata.

Example
 __rom char text[] = "No smoking";
 long long l = 1234; // long long reserved in data (by default)
 __sdata long long k = 1234; // long long reserved in sdata

The memory type qualifiers are treated like any other data type specifier (such as unsigned). This means the examples above
can also be declared as:
 char __rom text[] = "No smoking";
 long long __sdata k = 1234;

The __sfr keyword lets you define a variable as a "special function register". Though special function registers are not
available for the MicroBlaze, the compiler accepts the __sfr keyword as a qualifier for compatibility reasons. Variables
declared with __sfr have some special characteristics.
Because special function registers are dealing with I/O, it is incorrect to optimize away the access to them. Therefore, the
compiler deals with __sfr variables as if they were declared with the volatile qualifier.
Non-initialized global __sfr variables are not cleared at startup. For example:
 __sfr int i; // global __sfr variable not cleared

It is not allowed to initialize global __sfr variables and they are not initialized at startup. For example:
 __sfr int j=10; // not allowed to initialize global __sfr variable

C/C++ Language Reference

12 TR0173 (v4.0) April 6, 2009

Memory Types (Nios II)

Qualifier Description

__no_sdata Direct addressable RAM

__sdata Direct short addressable RAM
(Small data, +/- 32kB offset from global pointer register $gp)

By default, all data objects smaller than 4 bytes are placed in small data (sdata) sections. With the __no_sdata and __sdata
keywords, you can overrule this default and either force larger data objects in sdata or prevent smaller data objects from being
placed in sdata.

Example
 long long l = 1234; // long long reserved in data (by default)

 __sdata long long k = 1234; // long long reserved in sdata

The memory type qualifiers are treated like any other data type specifier (such as unsigned). This means the examples above
can also be declared as:
 long long __sdata k = 1234;

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 13

Memory Types (PowerPC)

Qualifier Description

__no_sdata Direct addressable RAM

__sdata Direct short addressable RAM
(Small data, +/- 32kB offset from global pointer register $gp)

The PowerPC in fact has two small data memories, sdata and sdata2, both with a size of 64kB. By default, all data objects
smaller than 4 bytes are placed in sdata or sdata2 (non-constant data is placed in sdata whereas constant data is placed in
sdata2). With the __no_sdata and __sdata keywords, you overrule this default.

Example
 long long l = 1234; // long long reserved in data (by default)
 const long long k = 1234; // long long reserved in rodata (by default)

 __sdata long long m; // long long reserved in sdata
 const __sdata long long n = 1234; // long long in sdata2

The memory type qualifiers are treated like any other data type specifier (such as unsigned). This means the example above
can also be declared as:
 long long __sdata m = 1234;
 const long long __sdata n = 1234;

C/C++ Language Reference

14 TR0173 (v4.0) April 6, 2009

Memory Types (TSK3000)

Qualifier Description

__no_sdata Direct addressable RAM

__sdata Direct short addressable RAM
(Small data, +/- 32kB offset from global pointer register $gp)

By default, all data objects smaller than 4 bytes are placed in small data (sdata) sections. With the __no_sdata and __sdata
keywords, you can overrule this default and either force larger data objects in sdata or prevent smaller data objects from being
placed in sdata.

Example
 long long l = 1234; // long long reserved in data (by default)

 __sdata long long k = 1234; // long long reserved in sdata

The memory type qualifiers are treated like any other data type specifier (such as unsigned). This means the examples above
can also be declared as:
 long long __sdata k = 1234;

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 15

Memory Types (TSK51x/TSK52x)

Qualifier Description

__data Direct addressable on-chip RAM

__sfr Defines a special function register.
Special optimizations are performed on this type of variables.

__bsfr Bit-addressable special function register

__idata Indirect addressable on-chip RAM

__bdata Bit-addressable on-chip RAM

__xdata External RAM

__pdata One 256 bytes page within external RAM

__rom
Data defined with this qualifier is placed in ROM.
This section is excluded from automatic initialization by the startup code.
__rom always implies the type qualifier const.

If you do not specify a memory type qualifier for the TSK51x/TSK52x, the memory type for the variable depends on the default
of the selected memory model (project options).

Memory Model Description Max RAM size Default memory type

small direct addressable internal RAM 128 bytes __data

auxiliary page one page of external RAM 256 bytes __pdata

large external RAM 64 kB __xdata

Example
 __data char c;
 __rom char text[] = "No smoking";
 __xdata int array[10][4];
 __idata long l;

The memory type qualifiers are treated like any other data type specifier (such as unsigned). This means the example above
can also be declared as:
 char __data c;
 char __rom text[] = "No smoking";
 int __xdata array[10][4];
 long __idata l;

C/C++ Language Reference

16 TR0173 (v4.0) April 6, 2009

Memory Types (TSK80x)

Qualifier Description

__sfr
Defines a special function register for access
of peripherals via the TSK80x I/O space.
Special optimizations are performed on this type of variables.

__sfr8 Defines an 8-bit special function register for access of
peripherals via the 8-bit addressable part of the TSK80x I/O space.

__rom
Data defined with this qualifier is placed in ROM.
This section is excluded from automatic initialization by the startup code.
__rom always implies the type qualifier const.

Example
 __rom char text[] = "No smoking";

The memory type qualifiers are treated like any other data type specifier (such as unsigned). This means the example above
can also be declared as:
 char __rom text[] = "No smoking";

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 17

Complexity
There are different measurements of the speed of any given algorithm. Given an input size of N, they can be described as
follows:

Name Speed Description Formula

exponential time slow takes an amount of time proportional to a constant raised to the Nth power K^N

polynomial time fast takes an amount of time proportional to N raised to some constant power N^K

linear time faster takes an amount of time directly proportional to N K * N

logarithmic time much faster takes an amount of time proportional to the logarithm of N K * log(N)

constant time fastest takes a fixed amount of time, no matter how large the input is K

C/C++ Language Reference

18 TR0173 (v4.0) April 6, 2009

Constant Escape Sequences
The following escape sequences can be used to define certain special characters within strings:

Escape Sequence Description

\' Single quote

\" Double quote

\\ Backslash

\nnn Octal number (nnn)

\0 Null character (really just the octal number zero)

\a Audible bell

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xnnn Hexadecimal number (nnn)

An example of this is contained in the following code:
 printf("This\nis\na\ntest\n\nShe said, \"How are you?\"\n");

which would display
 This
 is
 a
 test

 She said, "How are you?"

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 19

ASCII Chart
The following chart contains ASCII decimal, octal, hexadecimal and character codes for values from 0 to 127.

Decimal Octal Hex Character Description

0 0 00 NUL

1 1 01 SOH start of header

2 2 02 STX start of text

3 3 03 ETX end of text

4 4 04 EOT end of transmission

5 5 05 ENQ enquiry

6 6 06 ACK acknowledge

7 7 07 BEL bell

8 10 08 BS backspace

9 11 09 HT horizontal tab

10 12 0A LF line feed

11 13 0B VT vertical tab

12 14 0C FF form feed

13 15 0D CR carriage return

14 16 0E SO shift out

15 17 0F SI shift in

16 20 10 DLE data link escape

17 21 11 DC1 no assignment, but usually XON

18 22 12 DC2

19 23 13 DC3 no assignment, but usually XOFF

20 24 14 DC4

21 25 15 NAK negative acknowledge

22 26 16 SYN synchronous idle

23 27 17 ETB end of transmission block

24 30 18 CAN cancel

25 31 19 EM end of medium

26 32 1A SUB substitute

27 33 1B ESC escape

28 34 1C FS file seperator

29 35 1D GS group seperator

30 36 1E RS record seperator

31 37 1F US unit seperator

32 40 20 SPC space

C/C++ Language Reference

20 TR0173 (v4.0) April 6, 2009

Decimal Octal Hex Character Description

33 41 21 !

34 42 22 "

35 43 23 #

36 44 24 $

37 45 25 %

38 46 26 &

39 47 27 '

40 50 28 (

41 51 29)

42 52 2A *

43 53 2B +

44 54 2C ,

45 55 2D -

46 56 2E .

47 57 2F /

48 60 30 0

49 61 31 1

50 62 32 2

51 63 33 3

52 64 34 4

53 65 35 5

54 66 36 6

55 67 37 7

56 70 38 8

57 71 39 9

58 72 3A :

59 73 3B ;

60 74 3C <

61 75 3D =

62 76 3E >

63 77 3F ?

64 100 40 @

65 101 41 A

66 102 42 B

67 103 43 C

68 104 44 D

69 105 45 E

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 21

Decimal Octal Hex Character Description

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

89 131 59 Y

90 132 5A Z

91 133 5B [

92 134 5C \

93 135 5D]

94 136 5E ^

95 137 5F _

96 140 60 `

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6A j

C/C++ Language Reference

22 TR0173 (v4.0) April 6, 2009

Decimal Octal Hex Character Description

107 153 6B k

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B {

124 174 7C |

125 175 7D }

126 176 7E ~

127 177 7F DEL delete

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 23

Pre-processor Commands
The following is a list of all pre-processor commands in the standard C language.

#, ## manipulate strings

#define define variables

#error display an error message

#if, #ifdef, #ifndef, #else, #elif, #endif conditional operators

#include insert the contents of another file

#line set line and file information

#pragma implementation specific command

#undef used to undefine variables

Predefined preprocessor variables miscellaneous preprocessor variables

C/C++ Language Reference

24 TR0173 (v4.0) April 6, 2009

Pre-processor command: #, ##
The # and ## operators are used with the #define macro. Using # causes the first argument after the # to be returned as a string
in quotes. Using ## concatenates what's before the ## with what's after it.

Example
For example, the command
 #define to_string(s) # s

will make the compiler turn this command
 printf(to_string(Hello World!));

into
 printf("Hello World!");

Here is an example of the ## command:
 #define concatenate(x, y) x ## y

This code will make the compiler turn
 int concatenate(x, y) = 10;

into
 int xy = 10;

which will, of course, assign 10 to the integer variable 'xy'.

Pre-processor command: #define

Syntax
 #define macro-name replacement-string

The #define command is used to make substitutions throughout the file in which it is located. In other words, #define causes the
compiler to go through the file, replacing every occurrence of macro-name with replacement-string. The replacement
string stops at the end of the line.

Example
Here's a typical use for a #define (at least in C):
 #define TRUE 1
 #define FALSE 0
 ...
 int done = 0;
 while(done != TRUE)
 {
 ...
 }

Another feature of the #define command is that it can take arguments, making it rather useful as a pseudo-function creator.
Consider the following code:

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 25

 #define absolute_value(x) (((x) < 0) ? -(x) : (x))
 ...
 int num = -1;
 while(absolute_value(num))
 {
 ...
 }

It's generally a good idea to use extra parentheses when using complex macros. Notice that in the above example, the variable
"x" is always within it's own set of parentheses. This way, it will be evaluated in whole, before being compared to 0 or multiplied
by -1. Also, the entire macro is surrounded by parentheses, to prevent it from being contaminated by other code. If you're not
careful, you run the risk of having the compiler misinterpret your code.

Here is an example of how to use the #define command to create a general purpose incrementing for loop that prints out the
integers 1 through 20:
 #define count_up(v, low, high) \
 for((v) = (low); (v) <= (high); (v)++)

 ...

 int i;
 count_up(i, 1, 20)
 {
 printf("i is %d\n", i);
 }

Pre-processor command: #error

Syntax
 #error message

The #error command simply causes the compiler to stop when it is encountered. When an #error is encountered, the compiler
spits out the line number and whatever message is. This command is mostly used for debugging.

Pre-processor command: #if, #ifdef, #ifndef, #else, #elif, #endif
These commands give simple logic control to the compiler. As a file is being compiled, you can use these commands to cause
certain lines of code to be included or not included.
 #if expression

If the value of expression is true, then the code that immediately follows the command will be compiled.
 #ifdef macro

If the macro has been defined by a #define statement, then the code immediately following the command will be compiled.
 #ifndef macro

If the macro has not been defined by a #define statement, then the code immediately following the command will be compiled.

A few side notes: The command #elif is simply a horribly truncated way to say "elseif" and works like you think it would. You can
also throw in a "defined" or "!defined" after an #if to get added functionality.

C/C++ Language Reference

26 TR0173 (v4.0) April 6, 2009

Example
Here's an example of all these:
 #ifdef DEBUG
 printf("This is the test version, i=%d\n", i);
 #else
 printf("This is the production version!\n");
 #endif

Notice how that second example enables you to compile the same C source either to a debug version or to a production
version.

Pre-processor command: #include

Syntax
 #include <filename>
 #include "filename"

This command slurps in a file and inserts it at the current location. The main difference between the syntax of the two items is
that if filename is enclosed in angled brackets, then the compiler searches for it somehow. If it is enclosed in quotes, then the
compiler doesn't search very hard for the file.

While the behavior of these two searches is up to the compiler, usually the angled brackets means to search through the
standard library directories, while the quotes indicate a search in the current directory. For standard libraries, the #include
commands don't need to map directly to filenames. It is possible to use standard headers instead:
 #include <iostream>

Pre-processor command: #line

Syntax
 #line line_number "filename"

The #line command is simply used to change the value of the __LINE__ and __FILE__ variables. The filename is optional. The
__LINE__ and __FILE__ variables represent the current file and which line is being read. The command
 #line 10 "main.cpp"

changes the current line number to 10, and the current file to "main.cpp".

Pre-processor command: #pragma
The #pragma command gives the programmer the ability to tell the compiler to do certain things. Since the #pragma command
is implementation specific, uses vary from compiler to compiler. One option might be to trace program execution.

Pre-processor command: #undef
The #undef command undefines a previously defined macro variable, such as a variable defined by a #define.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 27

Predefined preprocessor variables

Syntax
 __LINE__
 __FILE__
 __DATE__
 __TIME__
 __cplusplus
 __STDC__

The following variables can vary by compiler, but generally work:

• The __LINE__ and __FILE__ variables represent the current line and current file being processed.

• The __DATE__ variable contains the current date, in the form month/day/year. This is the date that the file was compiled,
not necessarily the current date.

• The __TIME__ variable represents the current time, in the form hour:minute:second. This is the time that the file was
compiled, not necessarily the current time.

• The __cplusplus variable is only defined when compiling a C++ program. In some older compilers, this is also called
c_plusplus.

• The __STDC__ variable is defined when compiling a C program, and may also be defined when compiling C++.

C/C++ Language Reference

28 TR0173 (v4.0) April 6, 2009

C/C++ Keywords
The following is a list of all keywords that exist in the standard C language.

C/C++ Keywords

asm insert an assembly instruction

auto declare a local variable

bool declare a boolean variable

break break out of a loop

case a block of code in a switch statement

catch handles exceptions from throw

char declare a character variable

class declare a class

const declare immutable data or functions that do not change data

const_cast cast from const variables

continue bypass iterations of a loop

default default handler in a case statement

delete make memory available

do looping construct

double declare a double precision floating-point variable

dynamic_cast perform run-time casts

else alternate case for an if statement

enum create enumeration types

explicit only use constructors when they exactly match

export allows template definitions to be separated from their declarations

extern tell the compiler about variables defined elsewhere

false the boolean value of false

float declare a floating-point variable

for looping construct

friend grant non-member function access to private data

goto jump to a different part of the program

if execute code based off of the result of a test

inline optimize calls to short functions

int declare a integer variable

long declare a long integer variable

mutable override a const variable

namespace partition the global namespace by defining a scope

new allocate dynamic memory for a new variable

operator create overloaded operator functions

private declare private members of a class

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 29

protected declare protected members of a class

public declare public members of a class

register request that a variable be optimized for speed

reinterpret_cast change the type of a variable

restrict inform compiler about access restrictions for optimizations

return return from a function

short declare a short integer variable

signed modify variable type declarations

sizeof return the size of a variable or type

static create permanent storage for a variable

static_cast perform a nonpolymorphic cast

struct define a new structure

switch execute code based off of different possible values for a variable

template create generic functions

this a pointer to the current object

throw throws an exception

true the boolean value of true

try execute code that can throw an exception

typedef create a new type name from an existing type

typeid describes an object

typename declare a class or undefined type

union a structure that assigns multiple variables to the same memory location

unsigned declare an unsigned integer variable

using import complete or partial namespaces into the current scope

virtual create a function that can be overridden by a derived class

void declare functions or data with no associated data type

volatile warn the compiler about variables that can be modified unexpectedly

wchar_t declare a wide-character variable

while looping construct

C/C++ Language Reference

30 TR0173 (v4.0) April 6, 2009

C/C++ keyword: asm

Syntax
 asm("instruction");

The asm command allows you to insert assembly language commands directly into your code. The __asm__ keyword is
recognized and is equivalent to the asm token. Extended syntax is supported to indicate how assembly operands map to C/C++
variables.

Example
 asm("fsinx %1,%0" : "=f"(x) : "f"(a));

 // Map the output operand on "x",

 // and the input operand on "a".

C/C++ keyword: auto
The keyword auto is used to declare local variables with automatic (i.e. not static) storage duration.

The auto keyword is purely optional and is rarely used.

C/C++ keyword: bool
The keyword bool is used to declare Boolean logic variables; that is, variables which can be either true or false.
For example, the following code declares a boolean variable called done, initializes it to false, and then loops until that variable
is set to true.
 bool done = false;

 while(!done)

 {

 ...

 }

Also see the C/C++ data types.

C/C++ keyword: break
The break keyword is used to break out of a do, for, or while loop. It is also used to finish each clause of a switch statement,
keeping the program from "falling through" to the next case in the code. An example:
 while(x < 100)
 {
 if(x < 0)
 break;
 printf("%d\n", x);
 x++;
 }

A given break statement will break out of only the closest loop, no further. If you have a triply-nested for loop, for example, you
might want to include extra logic or a goto statement to break out of the loop.

C/C++ keyword: case
The case keyword is used to test a variable against a certain value in a switch statement.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 31

C/C++ keyword: catch
The catch statement handles exceptions generated by the throw statement.

C/C++ keyword: char
The char keyword is used to declare character variables. For more information about variable types, see the C/C++ data types.

C/C++ keyword: class

Syntax
 class class-name : inheritance-list

 {

 private-members-list;

 protected:

 protected-members-list;

 public:

 public-members-list;

 } object-list;

The class keyword allows you to create new classes. class-name is the name of the class that you wish to create, and
inheritance-list is an optional list of classes inherited by the new class. Members of the class are private by default,
unless listed under either the protected or public labels. object-list can be used to immediately instantiate one or more
instances of the class, and is also optional.

Example
 class Date

 {
 int Day;

 int Month;

 int Year;

 public:

 void display();

 };

C/C++ keyword: const
The const keyword can be used to tell the compiler that a certain variable should not be modified once it has been initialized.

It can also be used to declare functions of a class that do not alter any class data.

C/C++ keyword: const_cast

Syntax
 TYPE const_cast<TYPE> (object);

The const_cast keyword can be used to remove the const or volatile property from an object. The target data type must be the
same as the source type, except (of course) that the target type doesn't have to have the same const qualifier. The type TYPE
must be a pointer or reference type.

C/C++ Language Reference

32 TR0173 (v4.0) April 6, 2009

For example, the following code uses const_cast to remove the const qualifier from an object:
 class Foo

 {
 public:

 void func() {} // a non-const member function

 };

 void someFunction(const Foo& f)

 {

 f.func(); // compile error: cannot call a non-const
 // function on a const reference

 Foo &fRef = const_cast<Foo&>(f);

 fRef.func(); // okay

 }

C/C++ keyword: continue
The continue statement can be used to bypass iterations of a given loop.

For example, the following code will display all of the numbers between 0 and 20 except 10:
 for(int i = 0; i < 21; i++)
 {
 if(i == 10)
 {
 continue;
 }
 printf("%d ", i);
 }

C/C++ keyword: default
A default case in the switch statement.

C/C++ keyword: delete

Syntax
 delete p;

 delete[] pArray;

The delete operator frees the memory pointed to by p. The argument should have been previously allocated by a call to new or
0. The second form of delete should be used to delete an array that was allocated with "new []". If (in either forms) the argument
is 0 (NULL), nothing is done.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 33

C/C++ keyword: do

Syntax
 do
 {
 statement-list;
 } while(condition);

The do construct evaluates the given statement-list repeatedly, until condition becomes false. Note that every do loop
will evaluate its statement list at least once, because the terminating condition is tested at the end of the loop.

C/C++ keyword: double
The double keyword is used to declare double precision floating-point variables. Also see the C/C++ data types.

C/C++ keyword: dynamic_cast

Syntax
 TYPE& dynamic_cast<TYPE&> (object);

 TYPE* dynamic_cast<TYPE*> (object);

The dynamic_cast keyword casts a datum from one type to another, performing a run-time check to ensure the validity of the
cast.

If you attempt to cast to a pointer type, and that type is not an actual type of the argument object, then the result of the cast will
be NULL.

If you attempt to cast to a reference type, and that type is not an actual type of the argument object, then the cast will throw a
std::bad_cast exception.
 struct A

 {
 virtual void f() { }

 };
 struct B : public A { };

 struct C { };

 void f ()

 {

 A a;

 B b;

 A* ap = &b
 B* b1 = dynamic_cast<B*> (&a); // NULL, because 'a' is not a 'B'

 B* b2 = dynamic_cast<B*> (ap); // 'b'

 C* c = dynamic_cast<C*> (ap); // NULL

 A& ar = dynamic_cast<A&> (*ap); // OK

 B& br = dynamic_cast<B&> (*ap); // OK

 C& cr = dynamic_cast<C&> (*ap); // std::bad_cast

 }

C/C++ Language Reference

34 TR0173 (v4.0) April 6, 2009

C/C++ keyword: else
The else keyword is used as an alternative case for the if statement.

C/C++ keyword: enum

Syntax
 enum name {name-list} var-list;

The enum keyword is used to create an enumerated type named name that consists of the elements in name-list. The var-
list argument is optional, and can be used to create instances of the type along with the declaration. For example, the
following code creates an enumerated type for colors:
 enum ColorT {red, orange, yellow, green, blue, indigo, violet};
 ...
 enum ColorT c1 = indigo; // see note
 if(c1 == indigo)
 {
 printf("c1 is indigo\n");
 }

In the above example, the effect of the enumeration is to introduce several new constants named red, orange, yellow, etc.
By default, these constants are assigned consecutive integer values starting at zero. You can change the values of those
constants, as shown by the next example:
 enum ColorT { red = 10, blue = 15, green };
 ...
 enum ColorT c = green; // see note
 printf("c is %d\n", c);

When executed, the above code will display the following output:
 c is 16

Note: in C++ you can omit the enum keyword whenever you create an instance of an enumerated type.

C/C++ keyword: explicit
When a constructor is specified as explicit, no automatic conversion will be used with that constructor -- but parameters passed
to the constructor may still be converted. For example:
 struct foo
 {
 explicit foo(int a)
 : a_(a)
 { }

 int a_;
 };

 int bar(const foo & f)
 {
 return f.a_;
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 35

 bar(1); // fails because an implicit conversion from int to foo
 // is forbidden by explicit.

 bar(foo(1)); // works -- explicit call to explicit constructor.

 bar(static_cast<foo>(1)); // works -- call to explicit constructor via explicit cast.

 bar(foo(1.0)); // works -- explicit call to explicit constructor
 // with automatic conversion from float to int.

C/C++ keyword: export
The export keyword is used to allow definitions of C++ templates to be separated from their declarations.

Exporting a class template is equivalent to exporting each of its static data members and each of its non-inline member
functions. An exported template is special because its definition does not need to be present in a translation unit that uses that
template. In other words, the definition of an exported (non-class) template does not need to be explicitly or implicitly included in
a translation unit that instantiates that template. For example, the following is a valid C++ program consisting of two separate
translation units:
 // File 1:

 #include <stdio.h>
 static void trace() { printf("File 1\n"); }

 export template<class T> T const& min(T const&, T const&);

 int main()
 {
 trace();
 return min(2, 3);
 }

 // File 2:

 #include <stdio.h>
 static void trace() { printf("File 2\n"); }

 export template<class T> T const& min(T const &a, T const &b)
 {
 trace();
 return a<b? a: b;
 }

Note that these two files are separate translation units: one is not included in the other. That allows the two functions trace()
to coexist (with internal linkage).

C/C++ Language Reference

36 TR0173 (v4.0) April 6, 2009

C/C++ keyword: extern
The extern keyword is used to inform the compiler about variables declared outside of the current scope. Variables described by
extern statements will not have any space allocated for them, as they should be properly defined elsewhere.

Extern statements are frequently used to allow data to span the scope of multiple files.

When applied to function declarations, the additional "C" or "C++" string literal will change name mangling when compiling under
the opposite language. That is,
 extern "C" int plain_c_func(int param);

allows C++ code to execute a C library function plain_c_func.

C/C++ keyword: false
The Boolean value of "false".

C/C++ keyword: float
The float keyword is used to declare floating-point variables. Also see the C/C++ data types.

C/C++ keyword: for

Syntax
 for(initialization; test-condition; increment)
 {
 statement-list;
 }

The for construct is a general looping mechanism consisting of 4 parts:
1. the initialization, which consists of 0 or more comma-delimited variable initialization statements

2. the test-condition, which is evaluated to determine if the execution of the for loop will continue

3. the increment, which consists of 0 or more comma-delimited statements that increment variables

4. and the statement-list, which consists of 0 or more statements that will be executed each time the loop is executed.

For example:
 for(int i = 0; i < 10; i++)
 {
 printf("i is %d", i);
 }
 int j, k;
 for(j = 0, k = 10;
 j < k;
 j++, k--)
 {
 printf("j is %d and k is %d\n", j, k);
 }
 for(; ;)
 {
 // loop forever!
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 37

C/C++ keyword: friend
The friend keyword allows classes or functions not normally associated with a given class to have access to the private data of
that class.

C/C++ keyword: goto

Syntax
 goto labelA;
 ...
 labelA:

The goto statement causes the current thread of execution to jump to the specified label. While the use of the goto statement is
generally considered harmful, it can occasionally be useful. For example, it may be cleaner to use a goto to break out of a
deeply-nested for loop, compared to the space and time that extra break logic would consume.

C/C++ keyword: if

Syntax
 if(conditionA)
 {
 statement-listA;
 }
 else if(conditionB)
 {
 statement-listB;
 }
 ...

 else
 {
 statement-listN;
 }

The if construct is a branching mechanism that allows different code to execute under different conditions. The conditions are
evaluated in order, and the statement-list of the first condition to evaluate to true is executed. If no conditions evaluate to true
and an else statement is present, then the statement list within the else block will be executed. All of the else blocks are
optional.

C keyword: inline

Syntax
 inline int functionA(int i)
 {

 // inline this function

 }

The inline keyword requests that the compiler expand a given function in place, as opposed to inserting a call to that function.
The inline keyword is a request, not a command, and the compiler is free to ignore it for whatever reason.

With the inline keyword you ask the compiler to inline the specified function, regardless of the optimization strategy of the
compiler itself.

C/C++ Language Reference

38 TR0173 (v4.0) April 6, 2009

Example
 inline unsigned int abs(int val)
 {
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;
 return abs_val;
 }

You must define inline functions in the same source module as in which you call the function, because the compiler only inlines
a function in the module that contains the function definition. When you need to call the inline function from several source
modules, you must include the definition of the inline function in each module (for example using a header file).

When a function declaration is included in a class definition, the compiler should try to automatically inline that function. No
inline keyword is necessary in this case.

C/C++ keyword: int
The int keyword is used to declare integer variables. Also see the C/C++ data types.

C/C++ keyword: long
The long keyword is a data type modifier that is used to declare long integer variables. For more information on long, see the
C/C++ data types.

C/C++ keyword: mutable
The mutable keyword overrides any enclosing const statement. A mutable member of a const object can be modified.

C/C++ keyword: namespace

Syntax
 namespace name
 {
 declaration-list;
 }

The namespace keyword allows you to create a new scope. The name is optional, and can be omitted to create an unnamed
namespace. Once you create a namespace, you'll have to refer to it explicitly or use the using keyword.

Example
 namespace CartoonNameSpace
 {
 int HomersAge;
 void incrementHomersAge()
 {
 HomersAge++;
 }
 }
 int main()
 {
 ...
 CartoonNameSpace::HomersAge = 39;
 CartoonNameSpace::incrementHomersAge();
 printf("%d\n", CartoonNameSpace::HomersAge);
 ...
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 39

C/C++ keyword: new

Syntax
 pointer = new type;
 pointer = new type(initializer);
 pointer = new type[size];
 pointer = new(arg-list) type...

The new operator (valid only in C++) allocates a new chunk of memory to hold a variable of type type and returns a pointer to
that memory. An optional initializer can be used to initialize the memory (or, when type is a class, to provide arguments to the
constructor).
Allocating arrays can be accomplished by providing a size parameter in brackets (note that in this case no initializer can be
given, so the type must be default-constructible).
The optional arg-list parameter can be used with any of the other formats to pass a variable number of arguments to an
overloaded version of new(). For example, the following code shows how the new() function can be overloaded for a class and
then passed arbitrary arguments:
 class Base
 {
 public:
 Base() { }

 void *operator new(unsigned int size, string str)
 {
 printf("Logging an allocation of %d bytes for new object '%s'\n", size, str);
 return malloc(size);
 }

 int var;
 double var2;
 };

 ...

 Base* b = new ("Base instance 1") Base;

If an int is 4 bytes and a double is 8 bytes, the above code generates the following output when run:
 Logging an allocation of 12 bytes for new object 'Base instance 1'

C/C++ Language Reference

40 TR0173 (v4.0) April 6, 2009

C/C++ keyword: operator

Syntax
 return-type class-name::operator#(parameter-list)
 {
 ...
 }
 return-type operator#(parameter-list)
 {
 ...
 }

The operator keyword is used to overload operators. The sharp sign (#) listed above in the syntax description represents the
operator which will be overloaded. If part of a class, the class-name should be specified. For unary operators, parameter-
list should be empty, and for binary operators, parameter-list should contain the operand on the right side of the operator
(the operand on the left side is passed as this).

For the non-member operator overload function, the operand on the left side should be passed as the first parameter and the
operand on the right side should be passed as the second parameter.

You cannot overload the #, ##, ., :, .*, or ? tokens.

C/C++ keyword: private
Private data of a class can only be accessed by members of that class, except when friend is used. The private keyword can
also be used to inherit a base class privately, which causes all public and protected members of the base class to become
private members of the derived class.

C/C++ keyword: protected
Protected data are private to their own class but can be inherited by derived classes. The protected keyword can also be used
as an inheritance specifier, which causes all public and protected members of the base class to become protected members of
the derived class.

C/C++ keyword: public
Public data in a class are accessible to everyone. The public keyword can also be used as an inheritance specifier, which
causes all public and protected members of the base class to become public and protected members of the derived class.

C/C++ keyword: register
The register keyword requests that a variable be optimized for speed, and fell out of common use when computers became
better at most code optimizations than humans.

C/C++ keyword: reinterpret_cast

Syntax
 TYPE reinterpret_cast<TYPE> (object);

The reinterpret_cast operator changes one data type into another. It should be used to cast between incompatible pointer types.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 41

C/C++ keyword: restrict
The restrict C keyword is a type qualifier. An object that is accessed through a restrict-qualified pointer has a special association
with that pointer. This association requires that all accesses to that object use, directly or indirectly, the value of that particular
pointer. The use of the restrict qualifier is to promote optimization, and deleting all instances of the qualifier from all
preprocessing translation units composing a conforming program does not change its meaning.

The restrict qualifier can only be used for object pointers.

For example:
 int * restrict p; // OK
 int * restrict q; // OK
 int restrict i; // error

With these declarations you tell the C compiler that if an object is accessed using one of p or q, and that object is modified
anywhere in the program, then it is never accessed through the other.

C/C++ keyword: return

Syntax
 return;
 return(value);

The return statement causes execution to jump from the current function to whatever function called the current function. An
optional value can be returned. A function may have more than one return statement.

C/C++ keyword: short
The short keyword is a data type modifier that is used to declare short integer variables. See the C/C++ data types.

C/C++ keyword: signed
The signed keyword is a data type modifier that is usually used to declare signed char variables. See the C/C++ data types.

C/C++ keyword: sizeof
The sizeof operator is a compile-time operator that returns the size of the argument passed to it. The size is a multiple of the
size of a char, which on many personal computers is 1 byte (or 8 bits). The number of bits in a char is stored in the CHAR_BIT
constant defined in the <limits.h> header file.

For example, the following code uses sizeof to display the sizes of a number of variables:
 struct EmployeeRecord
 {
 int ID;
 int age;
 double salary;
 EmployeeRecord* boss;
 };

 ...

 printf("sizeof(int): %d\n", sizeof(int));
 printf("sizeof(float): %d\n", sizeof(float));
 printf("sizeof(double): %d\n", sizeof(double));
 printf("sizeof(char): %d\n", sizeof(char));
 printf("sizeof(EmployeeRecord): %d\n", sizeof(EmployeeRecord));

C/C++ Language Reference

42 TR0173 (v4.0) April 6, 2009

 int i;
 float f;
 double d;
 char c;
 EmployeeRecord er;

 printf("sizeof(i): %d\n", sizeof(i));
 printf("sizeof(f): %d\n", sizeof(f));
 printf("sizeof(d): %d\n", sizeof(d));
 printf("sizeof(c): %d\n", sizeof(c));
 printf("sizeof(er): %d\n", sizeof(er));

On some machines, the above code displays this output:
 sizeof(int): 4
 sizeof(float): 4
 sizeof(double): 8
 sizeof(char): 1
 sizeof(EmployeeRecord): 20
 sizeof(i): 4
 sizeof(f): 4
 sizeof(d): 8
 sizeof(c): 1
 sizeof(er): 20

Note that sizeof can either take a variable type (such as int) or a variable name (such as i in the example above).

It is also important to note that the sizes of various types of variables can change depending on what system you're on. Check
out a description of the C data types for more information.

The parentheses around the argument are not required if you are using sizeof with a variable type (e.g. sizeof(int)).

C/C++ keyword: static
The static data type modifier is used to create permanent storage for variables. Static variables keep their value between
function calls.

C/C++ keyword: static_cast

Syntax
 TYPE static_cast<TYPE> (object);

The static_cast keyword can be used for any normal conversion between types. This includes any casts between numeric
types, casts of pointers and references up the hierarchy, conversions with unary constructor, conversions with conversion
operator. For conversions between numeric types no run-time checks are performed if data fits the new type. Conversion with
unary constructor would be performed even if it is declared as explicit.

It can also cast pointers or references down and across the hierarchy as long as such conversion is avaliable and unambiguous.
No run-time checks are performed.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 43

C/C++ keyword: struct

Syntax
 struct struct-name : inheritance-list
 {
 public-members-list;
 protected:
 protected-members-list;
 private:
 private-members-list;
 } object-list;

Structs are like `classes`, except that by default members of a struct are public rather than private. In C, structs can only contain
data and are not permitted to have inheritance lists.
 struct struct-name
 {
 members-list;
 } object-list;

The object list is optional - structs may be defined without actually instantiating any new objects.
For example, the following code creates a new data type called Date (which contains three integers) and also creates an
instance of Date called today:
 struct Date
 {
 int day;
 int month;
 int year;
 } today;

 int main()
 {
 today.day = 4;
 today.month = 7;
 today.year = 1776;
 }

C/C++ Language Reference

44 TR0173 (v4.0) April 6, 2009

C/C++ keyword: switch

Syntax
 switch(expression)
 {
 case A:
 statement list;
 break;
 case B:
 statement list;
 break;
 ...
 case N:
 statement list;
 break;
 default:
 statement list;
 break;
 }

The switch statement allows you to test an expression for many values, and is commonly used as a replacement for multiple
if()...else if()...else if()... statements. break statements are required between each case statement, otherwise execution will "fall-
through" to the next case statement. The default case is optional. If provided, it will match any case not explicitly covered by the
preceding cases in the switch statement. For example:
 char keystroke = getch();
 switch(keystroke)
 {
 case 'a':
 case 'b':
 case 'c':
 case 'd':
 KeyABCDPressed();
 break;
 case 'e':
 KeyEPressed();
 break;
 default:
 UnknownKeyPressed();
 break;
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 45

C/C++ keyword: template

Syntax
 template <class data-type> return-type name(parameter-list)
 {
 statement-list;
 }

Templates are used to create generic functions and can operate on data without knowing the nature of that data. They
accomplish this by using a placeholder data-type for which many other data types can be substituted.

For example, the following code uses a template to define a generic swap function that can swap two variables of any type:
 template<class X> void genericSwap(X &a, X &b)
 {
 X tmp;

 tmp = a;
 a = b;
 b = tmp;
 }
 int main(void)
 {
 ...
 int num1 = 5;
 int num2 = 21;
 printf("Before, num1 is %d and num2 is %d\n", num1, num2);
 genericSwap(num1, num2);
 printf("After, num1 is %d and num2 is %d\n", num1, num2);
 char c1 = 'a';
 char c2 = 'z';
 printf("Before, c1 is %c and c2 is %c\n", c1, c2);
 genericSwap(c1, c2);
 printf("After, c1 is %c and c2 is %c\n", c1, c2);
 ...
 return(0);
 }

C/C++ keyword: this
The this keyword is a pointer to the current object. All member functions of a class have a this pointer.

C/C++ Language Reference

46 TR0173 (v4.0) April 6, 2009

C/C++ keyword: throw

Syntax
 try
 {
 statement list;
 }
 catch(typeA arg)
 {
 statement list;
 }
 catch(typeB arg)
 {
 statement list;
 }
 ...
 catch(typeN arg)
 {
 statement list;
 }

The throw statement is part of the C++ mechanism for exception handling. This statement, together with the try and catch
statements, gives programmers an elegant mechanism for error recovery.

You will generally use a try block to execute potentially error-prone code. Somewhere in this code, a throw statement can be
executed, which will cause execution to jump out of the try block and into one of the catch blocks.

A
 catch (...)
 {
 }

will catch any throw without considering what kind of object was thrown and without giving access to the thrown object.

Writing
 throw

within a catch block will re throw what ever was caught.

Example
 try
 {
 printf("Before throwing exception\n");
 throw 42;
 printf("Shouldn't ever see this!\n");
 }
 catch(int error)
 {
 printf("Error: caught exception %d\n", error);
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 47

C/C++ keyword: true
The Boolean value of "true".

C/C++ keyword: try
The try statement attempts to execute exception-generating code. See the throw statement for more details.

C/C++ keyword: typedef

Syntax
 typedef existing-type new-type;

The typedef keyword allows you to create a new alias for an existing data type.

This is often useful if you find yourself using a unwieldy data type -- you can use typedef to create a shorter, easier-to-use name
for that data type. For example:
 typedef unsigned int* pui_t;

 // data1 and data2 have the same type

 piu_t data1;
 unsigned int* data2;

C/C++ keyword: typeid

Syntax
 typeid(object);

The typeid operator returns a reference to a type_info object that describes object.

C/C++ keyword: typename
The typename keyword can be used to describe an undefined type or in place of the class keyword in a template declaration.

C/C++ keyword: union

Syntax
C++:
 union union-name
 {
 public-members-list;
 private:
 private-members-list;
 members-list;
 } object-list;

C:
 union union-name
 {
 members-list;
 } object-list;

C/C++ Language Reference

48 TR0173 (v4.0) April 6, 2009

A union is like a class, except that all members of a union share the same memory location and are by default public rather than
private. For example:
 union Data
 {
 int i;
 char c;
 };

C/C++ keyword: unsigned
The unsigned keyword is a data type modifier that is usually used to declare unsigned int variables. See the C/C++ data types.

C/C++ keyword: using
The using keyword is used to import a namespace (or parts of a namespace) into the current scope.

Example
For example, the following code imports the entire std namespace into the current scope so that items within that namespace
can be used without a preceeding "std::".
 using namespace std;

Alternatively, the next code snippet just imports a single element of the std namespace into the current namespace:
 using std::cout;

C/C++ keyword: virtual

Syntax
 virtual return-type name(parameter-list);

 virtual return-type name(parameter-list) = 0;

The virtual keyword can be used to create virtual functions, which can be overridden by derived classes.

• A virtual function indicates that a function can be overridden in a subclass, and that the overridden function will actually be
used.

• When a base object pointer points to a derived object that contains a virtual function, the decision about which version of
that function to call is based on the type of object pointed to by the pointer, and this process happens at run-time.

• A base object can point to different derived objects and have different versions of the virtual function run.

If the function is specified as a pure virtual function (denoted by the = 0), it must be overridden by a derived class.

For example, the following code snippet shows how a child class can override a virtual method of its parent, and how a non-
virtual method in the parent cannot be overridden:
 class Base
 {
 public:
 void nonVirtualFunc()
 {
 printf("Base: non-virtual function\n");
 }
 virtual void virtualFunc()
 {
 printf("Base: virtual function\n");
 }
 };

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 49

 class Child : public Base
 {
 public:
 void nonVirtualFunc()
 {
 printf("Child: non-virtual function\n");
 }
 void virtualFunc()
 {
 printf("Child: virtual function\n");
 }
 };

 int main()
 {
 Base* basePointer = new Child();
 basePointer->nonVirtualFunc();
 basePointer->virtualFunc();
 return 0;
 }

When run, the above code displays:
 Base: non-virtual function

 Child: virtual function

C/C++ keyword: void
The void keyword is used to denote functions that return no value, or generic variables which can point to any type of data. Void
can also be used to declare an empty parameter list. Also see the C/C++ data types.

C/C++ keyword: volatile
The volatile keyword is an implementation-dependent type qualifier, used when declaring variables, which prevents the compiler
from optimizing those variables. Volatile should be used with variables whose value can change in unexpected ways (i.e.
through an interrupt), which could conflict with optimizations that the compiler might perform.

C/C++ keyword: wchar_t
The keyword wchar_t is used to declare wide character variables. Also see the C/C++ data types.

C/C++ Language Reference

50 TR0173 (v4.0) April 6, 2009

C/C++ keyword: while

Syntax
 while(condition)
 {
 statement-list;
 }

The while keyword is used as a looping construct that will evaluate the statement-list as long as condition is true. Note
that if the condition starts off as false, the statement-list will never be executed. (You can use a do loop to guarantee
that the statement-list will be executed at least once.) For example:
 bool done = false;
 while(!done)
 {
 ProcessData();
 if(StopLooping())
 {
 done = true;
 }
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 51

Processor Specific Keywords
Below is a list of processor specific C keywords. They do not belong to the standard C language. The implementation of a
processor specific keyword may differ per processor. In this section they are explained separately per processor, though some
keywords are the same for all processors.

 ARM Micro
Blaze

Nios II Power
PC

TSK51x/
TSK52x

TSK80x TSK3000

__asm() x x x x x x x use assembly instructions in C source

__at() x x x x x x x place data object at an absolute address

__frame() x x x x safe registers for an interrupt function

__interrupt() x x x x x x x qualify function as interrupt service routine

__nesting_enabled x force save of LR and enable interrupts

__noinline x x x x x x x prevent compiler from inlining function

__noregaddr x register bank independent code
generation

__novector x prevent compiler from generating vector
symbol

__packed__ x x x x x prevent alignment gaps in structures

__reentrant x qualify function as reentrant

__registerbank() x assign new register bank to interrupt
function

__reset x jump to function at system reset

__static x qualify function as static

__system x qualify function as non-interruptable

__unaligned x x x x x suppress the alignment of objects or
structure members

C/C++ Language Reference

52 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __asm()
With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

Processor specific keyword: __asm() (ARM)

Syntax
 __asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template
Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

 %parm_nr[.regnum]
Parameter number in the range 0 .. 9.
With the optional .regnum you can access an individual register from a register pair.
For example, with the word register R12, .0 selects register R1.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

 constraint _char Constraint character: the type of register to be used for the C_expression.

 C_expression
Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name:q Name of the register you want to reserve.

Constraint Type Operand Remark

R
general purpose register
(64 bits)

r0 .. r11
Thumb mode r0 .. r7
Based on the specified register. A register pair
is formed (64-bit). For example r0r1.

r general purpose register r0 .. r11, lr Thumb mode r0 .. r7

i immediate value #value

l label label

m memory label variable stack or memory operand, a fixed address

number other operand same as %number

Input constraint only. The number must refer to an output
parameter. Indicates that %number and number are the same
register. Use %number.0 and %number.1 to indicate the first
and second half of a register pair when used in combination
with R.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 53

Processor specific keyword: __asm() (MicroBlaze)

Syntax
 __asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template
Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

 %parm_nr[.regnum]
Parameter number in the range 0 .. 9.
With the optional .regnum you can access an individual register from a register pair.
For example, with the word register R12, .0 selects register R1.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

 constraint _char Constraint character: the type of register to be used for the C_expression.

 C_expression
Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name:q Name of the register you want to reserve.

Constraint Type Operand Remark

r general purpose register r0 .. r31

i immediate value #immval

number other operand
same as
%number

Input constraint only. The number must refer to an output
parameter. Indicates that %number and number are the same
register. Use %number.0 and %number.1 to indicate the first and
second half of a register pair when used in combination with R.

C/C++ Language Reference

54 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __asm() (Nios II)

Syntax
 __asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template
Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

 %parm_nr[.regnum]
Parameter number in the range 0 .. 9.
With the optional .regnum you can access an individual register from a register pair.
For example, with the word register R12, .0 selects register R1.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

 constraint _char Constraint character: the type of register to be used for the C_expression.

 C_expression
Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name:q Name of the register you want to reserve.

Constraint Type Operand Remark

R
general purpose register
(64 bits)

r0 .. r31
Based on the specified register, a register pair
is formed (64-bit). For example r0:r1.

r
general purpose register
(32 bits)

r0 .. r31

i immediate value #value

l label label

m memory label variable stack or memory operand, a fixed address

number other operand same as %number

Input constraint only. The number must refer to an output
parameter. Indicates that %number and number are the same
register.
Use %number.0 and %number.1 to indicate the first and second
half of a register pair when used in combination with R.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 55

Processor specific keyword: __asm() (PowerPC)

Syntax
 __asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template
Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

 %parm_nr[.regnum]
Parameter number in the range 0 .. 9.
With the optional .regnum you can access an individual register from a register pair.
For example, with the word register R12, .0 selects register R1.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

 constraint _char Constraint character: the type of register to be used for the C_expression.

 C_expression
Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name:q Name of the register you want to reserve.

Constraint Type Operand Remark

R
general purpose register
(64 bits)

%r0..%r31
Based on the specified register, a register pair
is formed (64-bit). For example %r0:%r1.

r
general purpose register
(32 bits)

%r0..%r31

i immediate value #value

l label label

m memory label variable stack or memory operand, a fixed address

number other operand same as number

Input constraint only. The number must refer to an output
parameter. Indicates that %number and number are the same
register.
Use %number.0 and %number.1 to indicate the first and second
half of a register pair when used in combination with R.

C/C++ Language Reference

56 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __asm() (TSK3000)

Syntax
 __asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template
Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

 %parm_nr[.regnum]
Parameter number in the range 0 .. 9.
With the optional .regnum you can access an individual register from a register pair.
For example, with the word register R12, .0 selects register R1.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

 constraint _char Constraint character: the type of register to be used for the C_expression.

 C_expression
Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name:q Name of the register you want to reserve.

Constraint Type Operand Remark

R
general purpose register
(64 bits)

$v0,$v1, $a0 .. $a3,
$kt0, $kt1, $t0..$t9,
$s0 .. $s8

Based on the specified register, a register pair
is formed (64-bit). For example $v0:$v1.

r
general purpose register
(32 bits)

$v0,$v1, $a0 .. $a3,
$kt0, $kt1, $t0..$t9,
$s0 .. $s8

i immediate value #value

l label label

m memory label variable stack or memory operand, a fixed address

H multiply and devide register higher result $hi

L multiply and devide register lower result $lo

number other operand same as %number
Input constraint only. The number must refer to
an output parameter. Indicates that %number
and number are the same register.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 57

Processor specific keyword: __asm() (TSK51x/TSK52x)

Syntax
 __asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template
Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

 %parm_nr[.regnum]
Parameter number in the range 0 .. 9.
With the optional .regnum you can access an individual register from a register pair.
For example, with the word register R12, .0 selects register R1.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

 constraint _char Constraint character: the type of register to be used for the C_expression.

 C_expression
Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name:q Name of the register you want to reserve.

Constraint Type Operand Remark

a accumulator A

b bit
ACC.[0..7], B.[0..7], C, AC, F0,
RS1, RS0, OV, F1, P, _bitvar

bit registers/variables

d direct register PSW, SP, B, ACC, DPH, DPL, AR[0..7] direct address of registers

i immediate value #data, #data16

m memory direct, label, addr11, addr16, rel memory variable or function address

p data page pointer DPTR

r register R[0..7]

R registers R01, R12, R23, R34, R45, R56, R67 word registers

s register indirect @R0, @R1 register indirect addressing

number other operand same as %number
Input constraint only. The number must refer to an
output parameter. Indicates that %number and
number are the same register.

C/C++ Language Reference

58 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __asm() (TSK80x)

Syntax
 __asm("instruction_template");

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template One or more TSK80x assembly instructions

Constraint Type Operand Remark

i immediate value #value

m memory address, label
stack or memory operand, a fixed address or
indexed addressing

r register
A, B, C, D, E, H, L, I, R
IX, IY, SP, AF, BC, DE, HL

8-bit register
16-bit register

number other operand same as %number
Input constraint only. The number must refer to an
output parameter. Indicates that %number and
number are the same register.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 59

Processor specific keyword: __at() (all processors)

Syntax
 int myvar __at(address);

With the attribute __at() you can place an object at an absolute address.

Example
 unsigned char Display[80*24] __at(0x2000);

The array Display is placed at address 0x2000. In the generated assembly, an absolute section is created. On this position
space is reserved for the variable Display.
 int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized at 1.
 void f(void) __at(0xf0ff + 1) { }

The function f is placed at address 0xf100.

Take note of the following restrictions if you place a variable at an absolute address:
• The argument of the __at() attribute must be a constant address expression.

• You can place only global variables at absolute addresses. Parameters of functions, or automatic variables within functions
cannot be placed at absolute addresses.

• When declared extern, the variable is not allocated by the compiler. When the same variable is allocated within another
module but on a different address, the compiler, assembler or linker will not notice, because an assembler external object
cannot specify an absolute address.

• When the variable is declared static, no public symbol will be generated (normal C behavior).

• You cannot place structure members at an absolute address.

• Absolute variables cannot overlap each other. If you declare two absolute variables at the same address, the assembler and
/ or linker issues an error. The compiler does not check this.

• When you declare the same absolute variable within two modules, this produces conflicts during link time (except when one
of the modules declares the variable 'extern').

• If you use 0 as an address, this value is ignored. A zero value indicates a relocatable section.

C/C++ Language Reference

60 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __frame()
With the function type qualifier __frame() you can specify which registers and SFRs must be saved for a particular interrupt
function. Only the specified registers will be pushed and popped from the stack.
If you do not specify the function qualifier __frame(), the C compiler determines which registers must be pushed and popped.

Processor specific keyword: __frame() (ARM)

Syntax
 void __interrupt_xxx __frame(reg[, reg]...) isr(void)
 {
 ...
 }

With the function type qualifier __frame() you can specify which registers and SFRs must be saved for a particular interrupt
function. reg can be any register defined as an SFR. Only the specified registers will be pushed and popped from the stack.
If you do not specify the function qualifier __frame(), the C compiler determines which registers must be pushed and popped.

Example
 __interrupt_irq __frame(R4,R5,R6) void alarm(void)
 {
 ...
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 61

Processor specific keyword: __frame() (MicroBlaze)

Syntax
 void __interrupt(vector_address) __frame(reg[, reg]...) isr(void)
 {
 ...
 }

With the function type qualifier __frame() you can specify which registers and SFRs must be saved for a particular interrupt
function. reg can be any register defined as an SFR. Only the specified registers will be pushed and popped from the stack.
If you do not specify the function qualifier __frame(), the C compiler determines which registers must be pushed and popped.

Example
 __interrupt_irq __frame(R4,R5,R6) void alarm(void)
 {
 ...
 }

C/C++ Language Reference

62 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __frame() (TSK51x/TSK52x)

Syntax
 void __interrupt(vector_address[, vector_address]...)
 __frame(reg[, reg]...) isr(void)
 {
 ...
 }

With the function type qualifier __frame() you can specify which registers and SFRs must be saved for a particular interrupt
function. reg can be any register defined as an SFR. Only the specified registers will be pushed and popped from the stack.
If you do not specify the function qualifier __frame(), the C compiler determines which registers must be pushed and popped.

Example
 __interrupt(0x10) __frame(A,R0,R1) void alarm(void)
 {
 ...
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 63

Processor specific keyword: __frame() (TSK80x)

Syntax
 void __interrupt(vector_address[, vector_address]...)
 __frame(reg[, reg]...) isr(void)
 {
 ...
 }

With the function type qualifier __frame() you can specify which registers and SFRs must be saved for a particular interrupt
function. reg can be any register defined as an SFR. Only the specified registers will be pushed and popped from the stack.
If you do not specify the function qualifier __frame(), the C compiler determines which registers must be pushed and popped.

Example
 __interrupt(0x10) __frame(A,R0,R1) void alarm(void)
 {
 ...
 }

C/C++ Language Reference

64 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __interrupt
The TASKING C compiler supports a number of function qualifiers and keywords to program interrupt service routines (ISR). An
interrupt service routine (or: interrupt function, interrupt handler, exception handler) is called when an interrupt event (or: service
request) occurs.

Processor specific keyword: __interrupt() (MicroBlaze)

Syntax
 void __interrupt(vector_address) isr(void)
 {
 ...
 }

With the function type qualifier __interrupt() you can declare a function as an interrupt service routine. The function type
qualifier __interrupt() takes one vector address as argument. With the __interrupt() keyword, a jump to the actual
interrupt handler is caused.

Interrupt functions cannot return anything and must have a void argument type list.

The MicroBlaze supports five types of exceptions. The next table lists the types of exceptions and the processor mode that is
used to process that exception. When an exception occurs, execution is forced from a fixed memory address corresponding to
the type of exception. These fixed addresses are called the exception vectors.

Exception type Vector address Return register Return instruction Function type qualifier

Reset 0x00000000 - - __interrupt(0x00000000)

User vector (exception) 0x00000008 r15 rtsd __interrupt(0x00000008)

Interrupt 0x00000010 r14 rtid __interrupt(0x00000010)

Break 0x00000018 r16 rtbd __interrupt(0x00000018)

Hardware exception 0x00000020 r17 rted __interrupt(0x00000020)

Example
 void __interrupt(0x00000008) my_handler(void)
 {
 ...
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 65

Processor specific keyword: __interrupt (Nios II)

Syntax
 void __interrupt isr(void) __at(exception_address)

 {
 ...
 }

With the function type qualifier __interrupt you can declare a function as an interrupt service routine. You can specify the
interrupt jump location (exception address) with the attribute __at(). Note that this address is determined by your hardware.

Interrupt functions cannot return anything and must have a void argument type list.

Example
 void __interrupt my_handler(void) __at(0x20)
 {
 ...
 }

C/C++ Language Reference

66 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __interrupt() (TSK3000)

Syntax
 void __interrupt(vector_number[, vector_number]...) isr(void)
 {
 ...
 }

With the function type qualifier __interrupt() you can declare a function as an interrupt service routine. The function type
qualifier __interrupt() takes one or more vector numbers (0..31) as argument(s). All supplied vector numbers will be
initialized to point to the interrupt function.

Interrupt functions cannot return anything and must have a void argument type list.

Example
 void __interrupt(7) serial_receive(void)
 {
 ...
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 67

Processor specific keyword: __interrupt() (TSK51x/TSK52x)

Syntax
 void __interrupt(vector_address[, vector_address]...) isr(void)
 {
 ...
 }

With the function type qualifier __interrupt() you can declare a function as an interrupt service routine. The function type
qualifier __interrupt() takes one or more vector addresses as argument(s). All supplied vector addresses will be initialized
to point to the interrupt function.

Interrupt functions cannot return anything and must have a void argument type list.

Example
 void __interrupt(vector_address[, vector_address]...) isr(void)
 {
 ...
 }

Note: If you want to use interrupt numbers instead of vector addresses for the TSK51A core, you can use the __INTNO macro
which is defined in the delivered special function register file (regtsk51a.sfr) as:

C/C++ Language Reference

68 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __interrupt(), __interrupt_indirect() (PowerPC)

Syntax
 void __interrupt(vector_number) isr(void)
 {
 ...
 }

 void __interrupt_indirect(vector_number[, vector_number]...) isr(void)
 {
 ...
 }

You can define two types of interrupt service routines

__interupt() Fastest interrupt service routine. The interrupt function will be placed directly at the interrupt
vector, saving a jump instruction.

__interrupt_indirect()
More flexible interrupt service routine. Takes one or more vector numbers as arguments. The
vector table contains a jump to the actual interrupt handler. Useful when you want to use the
same interrupt function for different interrupts.

The interrupt number you specify for __interrupt() or __interrupt_indirect()must be in the range 0 to 15 (inclusive).

Interrupt functions cannot return anything and must have a void argument type list.

Example
 void __interrupt(5) external_interrupt(void)
 {
 /* function code fits at interrupt vector */

 }

 void __interrupt_indirect(7) serial_receive(void)
 {
 ...
 }

Note: Interrupts of the PowerPC are divided into two classes: critical and non-critical interrupts. You cannot simultaneously
specify the vector numbers of both critical and non-critical functions in the argument list of the __interrupt_indirect()
keyword.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 69

Processor specific keyword: __interrupt_nmi, __interrupt_mode1, __interrupt_mode2 (TSK80x)

Syntax
 void __interrupt(vector_address[, vector_address]...) isr(void)
 {
 ...
 }

 void __interrupt_mode2(vector_address[, vector_address]...) isr(void)
 {
 ...
 }

You can define three types of interrupt service routines with the following function type qualifiers:

__interupt_nmi Non-maskable interrupt: cannot be disabled by program control
Jumps to the first instruction at 0x66

__interrupt_mode1
Similar to a non-maskable interrupt: a normal interrupt acknowledge cycle is made, but data put
onto the data bus is ignored.
Jumps to the first instruction at 0x38

__interrupt()
__interrupt_mode2()

Most flexible interrupt. Takes one or more vector addresses as argument.
Jumps to the first instruction at the specified vector address.

The function qualifiers __interrupt() and __interrupt_mode2() take one or more vector addresses as argument(s). All
supplied vector addresses will be initialized to point to the interrupt function.
Interrupt functions cannot return anything and must have a void argument type list.

Example
TSK80x non-maskable interrupt:
 void __interrupt_nmi IntNmHandler(void)
 {
 InterruptNm();
 }

TSK80x mode 1 interrupt:
 void __interrupt_mode1 IntMode1Handler(void)
 {
 InterruptM1();
 }

TSK80x mode 2 interrupt (variant 1):
 void __interrupt(0x10) IntMode2Handler(void)
 {
 InterruptM2();
 }

TSK80x mode 2 interrupt (variant 2):
 void __interrupt_mode2(0x10) IntHandler(void)
 {
 InterruptM2();
 }

This will reserve a word (.dw directive) on address 0x10, where the address of the interrupt function is placed.

C/C++ Language Reference

70 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __interrupt_und, __interrupt_svc, __interrupt_iabt, __interrupt_dabt,
__interrupt_irq, __interrupt_fiq, __interrupt() (ARM)

Syntax
 void __interrupt_xxx isr(void)
 {
 ...
 }
 void __interrupt(n) isr(void)
 {
 ...
 }

You can define six types of exception handlers with the function type qualifiers:
• __interrupt_und

• __interrupt_svc

• __interrupt_iabt
• __interrupt_dabt

• __interrupt_irq

• __interrupt_fiq

You can also use the general __interrupt() function qualifier.

Interrupt functions and other exception handlers cannot return anything and must have a void argument type list.

The ARM supports seven types of exceptions. The next table lists the types of exceptions and the processor mode that is used
to process that exception. When an exception occurs, execution is forced from a fixed memory address corresponding to the
type of exception. These fixed addresses are called the exception vectors.

Exception type Mode Normal address High vector address Function type qualifier

Reset Supervisor 0x00000000 0xFFFF0000

Undefined instructions Undefined 0x00000004 0xFFFF0004 __interrupt_und

Supervisor call (software
interrupt)

Supervisor 0x00000008 0xFFFF0008 __interrupt_svc

Prefetch abort Abort 0x0000000C 0xFFFF000C __interrupt_iabt

Data abort Abort 0x00000010 0xFFFF0010 __interrupt_dabt

IRQ (interrupt) IRQ 0x00000018 0xFFFF0018 __interrupt_irq

FIQ (fast interrupt) FIQ 0x0000001C 0xFFFF001C __interrupt_fiq

Example
 void __interrupt_irq serial_receive(void)
 {
 ...
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 71

Processor specific keyword: __nesting_enabled (ARM)

Syntax
 __interrupt_xxx __nesting_enabled isr(void)
 {
 ...
 }

Normally interrupts are disabled when an exception handler is entered. With the function qualifier __nesting_enabled you
can force that the link register (LR) is saved and that interrupts are enabled.

Example
 void __interrupt_svc __nesting_enabled svc(int n)
 {
 if (n == 2)
 {
 __svc(3);

 }

 }

Note: The function qualifier __nesting_enabled is not available for M-profile architectures.

C/C++ Language Reference

72 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __noinline (all processors)

Syntax
 __noinline int functionA(int i)
 {
 // do not inline this function
 }

With the __noinline keyword, you prevent a function from being inlined, regardless of the optimization settings.

Example
 __noinline unsigned int abs(int val)
 {
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;
 return abs_val;
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 73

Processor specific keyword: __novector (ARM)

Syntax
 __interrupt_xxx __novector isr(void)

 {
 ...
 }

You can prevent the compiler from generating the __vector_n you can symbol by specifying the function qualifier
__novector. This can be necessary if you have more than one interrupt handler for the same exception, for example for
different IRQ's or for different run-time phases of your application. Without the __novector function qualifier the compiler
generates the __vector_n symbol multiple times, which results in a link error.

Example
 void __interrupt_irq __novector another_handler(void)
 {
 /* used __novector to prevent multiple _vector_6 symbols */

 }

C/C++ Language Reference

74 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __noregaddr (TSK51x/TSK52x)
You can use the keyword __noregaddr to switch to register bank independent code generation. In order to generate very
efficient code the compiler uses absolute register addresses in its code generation. For example a register to register 'move'.
Since there is no 'MOV register, register' instruction, the compiler will generate a 'MOV register, direct' with the absolute address
of the source register as the second operand.

The absolute address of a register depends on the register bank, but sometimes this dependency is undesired. For example
when a function is called from both the main thread and an interrupt thread. If both threads use different register banks, they
cannot call a function that uses absolute register addresses. To overcome this, you can instruct the compiler to generate a
register bank independent function that can be called from both threads.

Example
 __noregaddr int func(int x)
 {
 /* this function can be called from any function
 independent of its register bank */
 return x+1;
 }

 __registerbank(1) void f1(void)
 {
 func(1);
 }

 __registerbank(0) void main(void)
 {
 func(0);
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 75

Processor specific keyword: __packed__ (all 32-bit processors)
To prevent alignment gaps in structures, you can use the attribute __packed__. When you use the attribute __packed__
directly after the keyword struct, all structure members are marked __unaligned.

Example
The following two declarations are the same:

 struct __packed__
 {
 char c;
 int i;
 } s1;

 struct
 {
 __unaligned char c;
 __unaligned int i;
 } s2;

The attribute __packed__ has the same effect as adding the type qualifier __unaligned to the declaration to suppress the
standard alignment.
You can also use __packed__ in a pointer declaration. In that case it affects the alignment of the pointer itself, not the value of
the pointer. The following two declarations are the same:

 int * __unaligned p;
 int * p __packed__;

C/C++ Language Reference

76 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __registerbank() (TSK51x/TSK52x)

Syntax
 void __interrupt(vector_address[, vector_address]...)
 __registerbank(bank) isr(void)
 {
 ...
 }

For the TSK51x/TSK52x it is possible to assign a new register bank to an interrupt function, which can be used on the processor
to minimize the interrupt latency because registers do not need to be pushed on stack. You can switch register banks with the
__registerbank() function qualifier.

When you specify the __registerbank() qualifier the registers R0-R7 are implicitly saved when the register bank is being
switched (by using the predefined symbolic register addresses AR0-AR7).

The default register bank used is bank 0.

Example
Suppose timer(), from the previous example, is calling get_number(). The function prototype (and definition) of get_number()
should contain the correct __registerbank().
 #define __INTNO(nr) ((8*nr)+3)

 __interrupt(__INTNO(1)) __registerbank(2) void timer(void);

The TSK51x/TSK52x compiler places a long-jump instruction on the vector address 11 of interrupt number 1, to the timer()
routine, which switches the register bank to bank 2 and saves some more registers. When timer() is completed, the extra
registers are popped, the bank is switched back to the original value and a RETI instruction is executed.
You can call another C function from the interrupt C function. However, this function must be compiled with the same
__registerbank(bank-nr) qualifier, because the compiler generates code which uses the addresses of the registers R0-
R7. Therefore, the __registerbank(bank-nr) qualifier is also possible with normal C functions (and their prototype
declarations).
Suppose timer(), from the previous example, is calling get_number(). The function prototype (and definition) of
get_number() should contain the correct __registerbank().
 __registerbank(2) int get_number(void);

The compiler checks if a function calls another function using another register bank, which is an error.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 77

Processor specific keyword: __reset (TSK80x)
The function qualifier __reset generates a jump located at address 0x00 (system reset) to the location of the function (in the
example _start()). This way it is possible to execute a piece of code at system reset.

Example
 void __reset _start(void)
 {
 __setsp((unsigned int)_lc_es-1); /* initialize stack pointer */
 __init(); /* initialize C variables */
 exit(main(0)) /* argc is 0 */
 }

C/C++ Language Reference

78 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __static, __reentrant (TSK51x/TSK52x)
You can use the function qualifiers __static or __reentrant to specify a function as static or reentrant, respectively.

If you do not specify a function qualifier, the TSK51x/TSK52x compiler assumes that those functions are static. In static
functions parameters and automatic variables are not allocated on a stack, but in a static area. Reentrant functions use a less
efficient virtual dynamic stack which allows you to call functions recursively.

Example
 void f_static(void)
 {
 /* this function is by default __static */
 }
 __reentrant int f_reentrant (void)
 {
 int i; /* variable i is placed on a virtual stack */
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 79

Processor specific keyword: __system (MicroBlaze)
You can use the function qualifier __system to specify a function that cannot be interrupted. A function defined with the
__system qualifier is called with a BRK or BRKI instruction (instead of a branch instruction) and returns with a RTBD instruction
(instead of the RTS or RTSD instruction).
You cannot use the function qualifier __system on interrupt functions. Functions defined with __system cannot be inlined.

Example
 __system void non_interruptable(int a, int b)
 {
 ...
 }

C/C++ Language Reference

80 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __unaligned (all 32-bit processors)
With the type qualifier __unaligned you can specify to suppress the alignment of objects or structure members. This can be
useful to create compact data structures. In this case the alignment will be one bit for bit-fields or one byte for other objects or
structure members.
At the left side of a pointer declaration you can use the type qualifier __unaligned to mark the pointer value as potentially
unaligned. This can be useful to access externally defined data. However the compiler can generate less efficient instructions to
dereference such a pointer, to avoid unaligned memory access.

Example
 struct
 {
 char c;
 __unaligned int i; /* aligned at offset 1 ! */
 } s;

 __unaligned int * up = & s.i;

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 81

Intrinsic functions
The following is a list of all intrinsic functions. Intrinsic function do not belong to the standard C language but the compiler may
support intrinsics for a specific processor.

 ARM Micro
Blaze

Nios II Power
PC

TSK51x/
TSK52x

TSK80x TSK3000

__alloc x x x x x x x Allocate memory

__break x Insert break instruction

__dotdotdot__ x x x x Variable argument '...' operator

__free x x x x x x x Deallocate memory

__getbit x Get the value of a bit

__putbit x Set the value of a bit

__get_return_address x x x x x x Function return address (when profiling)

__getapsr x Get APSR status register

__setapsr x Set APSR status register

__getcpsr x Get CPSR status register

__getipsr x Get IPSR status register

__setcpsr x Set CPSR status register

__getspsr x Get SPSR status register

__setspsr x Set SPSR status register

__cgetfsl x Read control words from fast simplex link

__cputfsl x Write control words to fast simplex link

__getfsl x Read data words from fast simplex link

__putfsl x Write data words to fast simplex link

__getfsr x Get FSR register

__putfsr x Set FSR register

__getmsr x Get MSR register

__putmsr x Set MSR register

__msrclr x Clear bits in MSR register

__msrset x Set bits in MSR register

__getpc x Get value of program counter PC

__mfspr x Get special function register

__mtspr x Set special function register

__mfctr x Get special function register CTR

__mtctr x Set special function register CTR

__mflr x Get special function register LR

__mtlr x Set special function register LR

__mfmsr x Get special function register MSR

__mtmsr x Set special function register MSR

__mfxer x Get special function register XER

C/C++ Language Reference

82 TR0173 (v4.0) April 6, 2009

__mtxer x Set special function register XER

__getsp x Get stack pointer (SP)

__setsp x Set stack pointer (SP)

__mfc0 x Get value from SPR of coprocessor 0

__mtc0 x Set value to SPR of coprocessor 0

__nop x x x x Insert NOP instruction

__rol x Rotate left

__ror x Rotate right

__svc x Generate software interrupt.

__testclear x Read and clear semaphore

__vsp__ x Virtual Stack Pointer in use

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 83

Intrinsic function: __alloc

Syntax
 void * volatile __alloc(__size_t size);

Allocate memory. Same as library function malloc().
Returns: a pointer to space in external memory of size bytes length. NULL if there is not enough space left.

Intrinsic function: __break

Syntax
 volatile int __break(int val);

Generates the assembly break instruction. Val is a 20-bit value which will be encoded in the code field of the break instruction..

Returns: nothing.

Intrinsic function: __cgetfsl (MicroBlaze)

Syntax
 _Bool volatile __cgetfsl(unsigned char channel,
 unsigned int * ctrl, _Bool wait);

Read control words from a specified fast simplex link (fsl) channel.
Returns: True if valid data was read from the specified channel, otherwise False.

Intrinsic function: __cputfsl (MicroBlaze)

Syntax
 _Bool volatile __cputfsl(unsigned char channel,
 unsigned int * ctrl, _Bool wait);

Write control words to a specified fast simplex link (fsl) channel.
Returns: True if valid data was read from the specified channel, otherwise False.

Intrinsic function: __dotdotdot__

Syntax
 char * __dotdotdot__(void);

Variable argument '...' operator. Used in library function va_start().
Returns: the stack offset to the variable argument list.

C/C++ Language Reference

84 TR0173 (v4.0) April 6, 2009

Intrinsic function: __dotdotdot__ (Nios II)

Syntax
 void * __dotdotdot__(void);

Variable argument '...' operator. Used in library function va_start().
Returns: the stack offset to the variable argument list.

Intrinsic function: __free

Syntax
 void volatile __free(void *p);

Deallocates the memory pointed to by p. p must point to memory earlier allocated by a call to __alloc(). Same as library function
free().
Returns: nothing.

Intrinsic function: __get_return_address

Syntax
 __codeptr volatile __get_return_address(void);

Used by the compiler for profiling when you compile with the -p (--profile) option.

Returns: return address of a function.

Intrinsic function: __getapsr (ARM)

Syntax
 unsigned int volatile __getapsr(void);

Note: This intrinsic is only available for ARMv6-M and ARMv7-M (M-profile architectures).

Get the value of the APSR status register.
Returns: the value of the status register APSR.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 85

Intrinsic function: __getbit (TSK51x/TSK52x)

Syntax
 __bit __getbit(bitaddressable, bitoffset);

Get the value of a bit. bitoffset must be an integral constant expression.
Returns: the bit at bitoffset (range 0-7 for a char, 0-15 for an int or 0-31 for a long) of the bitaddressable operand for
use in bit expressions.

Example
 __bdata unsigned char byte;
 int i;

 if (__getbit(byte, 3))
 i = 1;

Intrinsic function: __getcpsr (ARM)

Syntax
 unsigned int volatile __getcpsr(void);

Get the value of the CPSR status register.
Returns: the value of the status register CPSR.

Intrinsic function: __getfsl (MicroBlaze)

Syntax
 _Bool volatile __getfsl(unsigned char channel,
 unsigned int * data, _Bool wait);

Read data words from a specified fast simplex link (fsl) channel. Channel must be a constant value in the range 0..7. The read
data is stored in *data. With the boolean wait you can choose whether or not to wait for information: True: wait for
information, False: do not wait for information (the channel may not provide data).

Returns: True if valid data was read from the specified channel, otherwise False.

Intrinsic function: __getfsr (MicroBlaze)

Syntax
 unsigned int volatile __getfsr(void);

Get the value of the floating-point state register FSR.
Returns: the value of the floating-point state register FSR.

C/C++ Language Reference

86 TR0173 (v4.0) April 6, 2009

Intrinsic function: __getipsr (ARM)

Syntax
 unsigned int volatile __getipsr(void);

Note: This intrinsic is only available for ARMv6-M and ARMv7-M (M-profile architectures).

Get the value of the IPSR status register.
Returns: the value of the status register IPSR.

Intrinsic function: __getmsr (MicroBlaze)

Syntax
 unsigned int volatile __getmsr(void);

Get the value of the machine state register MSR.
Returns: the value of the machine state register MSR.

Intrinsic function: __getpc (MicroBlaze)

Syntax
 unsigned int volatile __getpc(void);

Get the value of the program counter PC.
Returns: the value of the program counter.

Intrinsic function: __getsp (TSK80x)

Syntax
 unsigned int volatile __getsp(void);

Get the value of the stack pointer SP.
Returns: the value of the stack pointer.

Intrinsic function: __getspsr (ARM)

Syntax
 unsigned int volatile __getspsr(void);

Get the value of the SPSR status register.
Returns: the value of the status register SPSR.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 87

Example
 #define SR_F 0x00000040
 #define SR_I 0x00000080

 i = __setspsr (0, SR_F | SR_I);
 if (i & (SR_F | SR_I))
 {
 exit (6); /* Interrupt flags not correct */
 }

 if (__getspsr () & (SR_F | SR_I))
 {
 exit (7); /* Interrupt flags not correct */
 }

Intrinsic function: __mfc0 (TSK3000)

Syntax
 volatile int __mfc0(int spr);

Get the value from special function register spr of coprocessor 0.

Returns: the value of the SPR register of coprocessor 0.

Intrinsic function: __mfctr (PowerPC)

Syntax
 volatile int __mfctr(void);

Get the value from special function register CTR. (This equivalent to __mfspr(0x009))

Returns: the value of the CTR register.

Intrinsic function: __mflr (PowerPC)

Syntax
 volatile int __mflr(void);

Get the value from special function register LR. (This equivalent to __mfspr(0x008))

Returns: the value of the LR register.

Intrinsic function: __mfmsr (PowerPC)

Syntax
 volatile int __mfmsr(void);

Get the value from special function register MSR.
Returns: the value of the MSR register.

C/C++ Language Reference

88 TR0173 (v4.0) April 6, 2009

Intrinsic function: __mfspr (PowerPC)

Syntax
 volatile int __mfspr(int spr);

Get the value from a special function register. spr is the number of the special purpose register and can be specified either as a
decimal number or as a hexadecimal number.
Returns: the value of the specified special purpose register.

Intrinsic function: __mfxer (PowerPC)

Syntax
 volatile int __mfxer(void);

Get the value from special function register XER. (This equivalent to __mfspr(0x001))

Returns: the value of the XER register.

Intrinsic function: __msrclr (MicroBlaze)

Syntax
 unsigned int __msrclr(unsigned int value);

Clear a number of bits in the machine state register MSR. Value should be a 14 bit mask. If you specify a value larger than 214,
the instruction is ignored and the compiler will use the getmsr and putmsr instructions instead.

Returns: the value of the MSR register before bits were cleared.

Intrinsic function: __msrset (MicroBlaze)

Syntax
 unsigned int __msrset(unsigned int value);

Set a number of bits in the machine state register MSR. Value should be a 14 bit mask. If you specify a value larger than 214,
the instruction is ignored and the compiler will use the getmsr and putmsr instructions instead.

Returns: the value of the MSR register before bits were set.

Intrinsic function: __mtc0 (TSK3000)

Syntax
 volatile void __mtc0(int val, int spr);

Put a value val into special purpose register spr of coprocessor 0.

Returns: nothing.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 89

Intrinsic function: __mtctr (PowerPC)

Syntax
 volatile void __mtctr(int val);

Put a value val into special function register CTR. (This equivalent to __mtspr(0x009,val))

Returns: nothing.

Intrinsic function: __mtlr (PowerPC)

Syntax
 volatile void __mtlr(int val);

Put a value val into special function register LR. (This equivalent to __mtspr(0x008,val))

Returns: nothing.

Intrinsic function: __mtmsr (PowerPC)

Syntax
 volatile void __mtmsr(int val);

Put a value val into special function register MSR.

Returns: nothing.

Intrinsic function: __mtspr (PowerPC)

Syntax
 volatile void __mtspr(int spr, int val);

Put a value into a special function register. spr is the number of the special purpose register and can be specified either as a
decimal number or as a hexadecimal number. val is the value to put into the specified register.

Returns: nothing.

Intrinsic function: __mtxer (PowerPC)

Syntax
 volatile void __mtxer(int val);

Put a value val into special function register XER. (This equivalent to __mtspr(0x001,val))

Returns: nothing.

C/C++ Language Reference

90 TR0173 (v4.0) April 6, 2009

Intrinsic function: __nop

Syntax
 void __nop(void);

Generate NOP instructions.
Returns: nothing.

Example
 __nop(); /* generate NOP instruction */

Intrinsic function: __putbit (TSK51x/TSK52x)

Syntax
 void __putbit(__bit value, bitaddressable, bitoffset);

Assign a value to the bit at bitoffset (range 0-7 for a char , 0-15 for an int or 0-31 for a long) of the bitaddressable
operand. bitoffset must be an integral constant expression.

Returns: nothing.

Example
 __bdata unsigned int word;

 __putbit(1, word, 11);
 __putbit(0, word, 10);

Intrinsic function: __putfsl (MicroBlaze)

Syntax
 _Bool volatile __putfsl(unsigned char channel,
 unsigned int * data, _Bool wait);

Write data words to a specified fast simplex link (fsl) channel. Channel must be a constant value in the range 0..7. The data to
write must be stored in *data. With the boolean wait you can choose whether or not to wait for information: True: wait for
information, False: do not wait for information (the channel may not accept data).

Returns: True if valid data was written to the specified channel, otherwise False.

Intrinsic function: __putfsr (MicroBlaze)

Syntax
 void volatile __putfsr(unsigned int value);

Set the value of the floating-point state register FSR to value.

Returns: nothing.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 91

Intrinsic function: __putmsr (MicroBlaze)

Syntax
 void volatile __putmsr(unsigned int value);

Set the value of the machine state register MSR to value.

Returns: nothing.

Intrinsic function: __rol (TSK51x/TSK52x)

Syntax
 unsigned char __rol(unsigned char operand, unsigned char count);

Use the RL instruction to rotate operand left count times.

Returns: rotated value.

Example
 unsigned char c;
 int i;

 /* rotate left, using int variable */
 c = __rol(c, i);

Intrinsic function: __ror (TSK51x/TSK52x)

Syntax
 unsigned char __ror(unsigned char operand, unsigned char count);

Use the RR instruction to rotate operand right count times.

Returns: rotated value.

Example
 unsigned char c;
 int i;

 /* rotate right, using constant */
 c = __ror(c, 2);
 c = __ror(c, 3);
 c = __ror(c, 7);

Intrinsic function: __setapsr (ARM)

Syntax
 unsigned int volatile __getapsr(void);

Note: This intrinsic is only available for ARMv6-M and ARMv7-M (M-profile architectures).

Set or clear bits in the APSR status register.
Returns: the new value of the APSR status register.

C/C++ Language Reference

92 TR0173 (v4.0) April 6, 2009

Intrinsic function: __setcpsr (ARM)

Syntax
 unsigned int volatile __setcpsr(int set, int clear);

Set or clear bits in the CPSR status register.
Returns: the new value of the CPSR status register.

Intrinsic function: __setsp (TSK80x)

Syntax
 void volatile __setsp(unsigned int value);

Set the value of the stack pointer SP to value.

Returns: nothing.

Intrinsic function: __setspsr (ARM)

Syntax
 unsigned int volatile __setspsr(int set, int clear);

Set or clear bits in the SPSR status register.
Returns: the new value of the SPSR status register.

Example
 #define SR_F 0x00000040
 #define SR_I 0x00000080

 i = __setspsr (0, SR_F | SR_I);
 if (i & (SR_F | SR_I))
 {
 exit (6); /* Interrupt flags not correct */
 }

 if (__getspsr () & (SR_F | SR_I))
 {
 exit (7); /* Interrupt flags not correct */
 }

Intrinsic function: __svc (ARM)

Syntax
 void volatile __svc(int number);

Generates a supervisor call (software interrupt). Number must be a constant value.

Returns: nothing.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 93

Intrinsic function: __testclear (TSK51x/TSK52x)

Syntax
 __bit volatile __testclear(__bit *semaphore);

Read and clear semaphore using the JBC instruction.
Returns: 0 if semaphore was not cleared by the JBC instruction, 1 otherwise.

Example
 __bit b;
 unsigned char c;

 if (__testclear(&b)) /* JBC instruction */
 c=1;

Intrinsic function: __vsp__ (TSK51x/TSK52x)

Syntax
 __bit __vsp__(void);

Virtual stack pointer used. Used in library function va_arg().
Returns: 1 if the virtual stack pointer is used, 0 otherwise.

C/C++ Language Reference

94 TR0173 (v4.0) April 6, 2009

Standard C Library
The following is a list of all C functions in the standard C language.

abort stops the program

abs absolute value

acos arc cosine

asctime a textual version of the time

asin arc sine

assert stops the program if an expression isn't true

atan arc tangent

atan2 arc tangent, using signs to determine quadrants

atexit sets a function to be called when the program exits

atof converts a string to a double

atoi converts a string to an integer

atol converts a string to a long

bsearch perform a binary search

calloc allocates and clears a two-dimensional chunk of memory

ceil the smallest integer not less than a certain value

clearerr clears errors

clock returns the amount of time that the program has been running

cos cosine

cosh hyperbolic cosine

ctime returns a specifically formatted version of the time

difftime the difference between two times

div returns the quotient and remainder of a division

exit stop the program

exp returns "e" raised to a given power

fabs absolute value for floating-point numbers

fclose close a file

feof true if at the end-of-file

ferror checks for a file error

fflush writes the contents of the output buffer

fgetc get a character from a stream

fgetpos get the file position indicator

fgets get a string of characters from a stream

floor returns the largest integer not greater than a given value

fmod returns the remainder of a division

fopen open a file

fprintf print formatted output to a file

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 95

fputc write a character to a file

fputs write a string to a file

fread read from a file

free returns previously allocated memory to the operating system

freopen open an existing stream with a different name

frexp decomposes a number into scientific notation

fscanf read formatted input from a file

fseek move to a specific location in a file

fsetpos move to a specific location in a file

ftell returns the current file position indicator

fwrite write to a file

getc read a character from a file

getchar read a character from STDIN

getenv get enviornment information about a variable

gets read a string from STDIN

gmtime returns a pointer to the current Greenwich Mean Time

isalnum true if a character is alphanumeric

isalpha true if a character is alphabetic

iscntrl true if a character is a control character

isdigit true if a character is a digit

isgraph true if a character is a graphical character

islower true if a character is lowercase

isprint true if a character is a printing character

ispunct true if a character is punctuation

isspace true if a character is a space character

isupper true if a character is an uppercase character

isxdigit true if a character is a hexidecimal character

labs absolute value for long integers

ldexp computes a number in scientific notation

ldiv returns the quotient and remainder of a division, in long integer form

localtime returns a pointer to the current time

log natural logarithm

log10 natural logarithm, in base 10

longjmp start execution at a certain point in the program

malloc allocates memory

memchr searches an array for the first occurance of a character

memcmp compares two buffers

memcpy copies one buffer to another

memmove moves one buffer to another

memset fills a buffer with a character

C/C++ Language Reference

96 TR0173 (v4.0) April 6, 2009

mktime returns the calendar version of a given time

modf decomposes a number into integer and fractional parts

perror displays a string version of the current error to STDERR

pow returns a given number raised to another number

printf write formatted output to STDOUT

putc write a character to a stream

putchar write a character to STDOUT

puts write a string to STDOUT

qsort perform a quicksort

raise send a signal to the program

rand returns a pseudorandom number

realloc changes the size of previously allocated memory

remove erase a file

rename rename a file

rewind move the file position indicator to the beginning of a file

scanf read formatted input from STDIN

setbuf set the buffer for a specific stream

setjmp set execution to start at a certain point

setlocale sets the current locale

setvbuf set the buffer and size for a specific stream

signal register a function as a signal handler

sin sine

sinh hyperbolic sine

sprintf write formatted output to a buffer

sqrt square root

srand initialize the random number generator

sscanf read formatted input from a buffer

strcat concatenates two strings

strchr finds the first occurance of a character in a string

strcmp compares two strings

strcoll compares two strings in accordance to the current locale

strcpy copies one string to another

strcspn searches one string for any characters in another

strerror returns a text version of a given error code

strftime returns individual elements of the date and time

strlen returns the length of a given string

strncat concatenates a certain amount of characters of two strings

strncmp compares a certain amount of characters of two strings

strncpy copies a certain amount of characters from one string to another

strpbrk finds the first location of any character in one string, in another string

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 97

strrchr finds the last occurance of a character in a string

strspn returns the length of a substring of characters of a string

strstr finds the first occurance of a substring of characters

strtod converts a string to a double

strtok finds the next token in a string

strtol converts a string to a long

strtoul converts a string to an unsigned long

strxfrm converts a substring so that it can be used by string comparison functions

system perform a system call

tan tangent

tanh hyperbolic tangent

time returns the current calendar time of the system

tmpfile return a pointer to a temporary file

tmpnam return a unique filename

tolower converts a character to lowercase

toupper converts a character to uppercase

ungetc puts a character back into a stream

va_arg use variable length parameter lists

vprintf, vfprintf, and vsprintf write formatted output with variable argument lists

C/C++ Language Reference

98 TR0173 (v4.0) April 6, 2009

Standard C Date & Time Functions
The following is a list of all Standard C Date & Time functions.

asctime a textual version of the time

clock returns the amount of time that the program has been running

ctime returns a specifically formatted version of the time

difftime the difference between two times

gmtime returns a pointer to the current Greenwich Mean Time

localtime returns a pointer to the current time

mktime returns the calendar version of a given time

setlocale sets the current locale

strftime returns individual elements of the date and time

time returns the current calendar time of the system

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 99

Standard C date & time function: asctime

Syntax
 #include <time.h>
 char *asctime(const struct tm *ptr);

The function asctime() converts the time in the struct 'ptr' to a character string of the following format:
 day month date hours:minutes:seconds year

An example:
 Mon Jun 26 12:03:53 2000

Standard C date & time function: clock

Syntax
 #include <time.h>
 clock_t clock(void);

The clock() function returns the processor time since the program started, or -1 if that information is unavailable. To convert the
return value to seconds, divide it by CLOCKS_PER_SEC. (Note: if your compiler is POSIX compliant, then CLOCKS_PER_SEC
is always defined as 1000000.)

Standard C date & time function: ctime

Syntax
 #include <time.h>
 char *ctime(const time_t *time);

The ctime() function converts the calendar time time to local time of the format:
 day month date hours:minutes:seconds year

using ctime() is equivalent to
 asctime(localtime(tp));

Standard C date & time function: difftime

Syntax
 #include <time.h>
 double difftime(time_t time2, time_t time1);

The function difftime() returns time2 - time1, in seconds.

C/C++ Language Reference

100 TR0173 (v4.0) April 6, 2009

Standard C date & time function: gmtime

Syntax
 #include <time.h>
 struct tm *gmtime(const time_t *time);

The gmtime() function returns the given time in Coordinated Universal Time (usually Greenwich mean time), unless it's not
supported by the system, in which case NULL is returned. Watch out for static return.

Standard C date & time function: localtime

Syntax
 #include <time.h>
 struct tm *localtime(const time_t *time);

The function localtime() converts calendar time time into local time. Watch out for the static return.

Standard C date & time function: mktime

Syntax
 #include <time.h>
 time_t mktime(struct tm *time);

The mktime() function converts the local time in time to calendar time, and returns it. If there is an error, -1 is returned.

Standard C date & time function: setlocale

Syntax
 #include <locale.h>
 char *setlocale(int category, const char * locale);

The setlocale() function is used to set and retrieve the current locale. If locale is NULL, the current locale is returned.
Otherwise, locale is used to set the locale for the given category.
category can have the following values:

Value Description

LC_ALL All of the locale

LC_TIME Date and time formatting

LC_NUMERIC Number formatting

LC_COLLATE String collation and regular expression matching

LC_CTYPE
Regular expression matching, conversion, case-sensitive comparison,
wide character functions, and character classification.

LC_MONETARY For monetary formatting

LC_MESSAGES For natural language messages

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 101

Standard C date & time function: strftime

Syntax
 #include <time.h>
 size_t strftime(char *str, size_t maxsize, const char *fmt, struct tm *time);

The function strftime() formats date and time information from time to a format specified by fmt, then stores the result in str
(up to maxsize characters). Certain codes may be used in fmt to specify different types of time:

Code Meaning

%a abbreviated weekday name (e.g. Fri)

%A full weekday name (e.g. Friday)

%b abbreviated month name (e.g. Oct)

%B full month name (e.g. October)

%c the standard date and time string

%d day of the month, as a number (1-31)

%H hour, 24 hour format (0-23)

%I hour, 12 hour format (1-12)

%j day of the year, as a number (1-366)

%m month as a number (1-12).

%M minute as a number (0-59)

%p locale's equivalent of AM or PM

%S second as a number (0-59)

%U week of the year, (0-53), where week 1 has the first Sunday

%w weekday as a decimal (0-6), where Sunday is 0

%W week of the year, (0-53), where week 1 has the first Monday

%x standard date string

%X standard time string

%y year in decimal, without the century (0-99)

%Y year in decimal, with the century

%Z time zone name

%% a percent sign

The strftime() function returns the number of characters put into str, or zero if an error occurs.

Standard C date & time function: time

Syntax
 #include <time.h>
 time_t time(time_t *time);

The function time() returns the current time, or -1 if there is an error. If the argument 'time' is given, then the current time is
stored in 'time'.

C/C++ Language Reference

102 TR0173 (v4.0) April 6, 2009

Standard C I/O Functions
The following is a list of all Standard C I/O functions. For C++, these functions provide an alternative to the C++ stream-based
I/O classes.

clearerr clears errors

fclose close a file

feof true if at the end-of-file

ferror checks for a file error

fflush writes the contents of the output buffer

fgetc get a character from a stream

fgetpos get the file position indicator

fgets get a string of characters from a stream

fopen open a file

fprintf print formatted output to a file

fputc write a character to a file

fputs write a string to a file

fread read from a file

freopen open an existing stream with a different name

fscanf read formatted input from a file

fseek move to a specific location in a file

fsetpos move to a specific location in a file

ftell returns the current file position indicator

fwrite write to a file

getc read a character from a file

getchar read a character from stdin

gets read a string from stdin

perror displays a string version of the current error to stderr

printf write formatted output to stdout

putc write a character to a stream

putchar write a character to stdout

puts write a string to stdout

remove erase a file

rename rename a file

rewind move the file position indicator to the beginning of a file

scanf read formatted input from stdin

setbuf set the buffer for a specific stream

setvbuf set the buffer and size for a specific stream

sprintf write formatted output to a buffer

sscanf read formatted input from a buffer

tmpfile return a pointer to a temporary file

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 103

tmpnam return a unique filename

ungetc puts a character back into a stream

vprintf, vfprintf, and vsprintf write formatted output with variable argument lists

Standard C I/O function: clearerr

Syntax
 #include <stdio.h>
 void clearerr(FILE *stream);

The clearerr function resets the error flags and EOF indicator for the given stream. When an error occurs, you can use perror()
to figure out which error actually occurred.

Standard C I/O function: fclose

Syntax
 #include <stdio.h>
 int fclose(FILE *stream);

The function fclose() closes the given file stream, deallocating any buffers associated with that stream. fclose() returns 0 upon
success, and EOF otherwise.

Standard C I/O function: feof

Syntax
 #include <stdio.h>
 int feof(FILE *stream);

The function feof() returns a nonzero value if the end of the given file stream has been reached.

Standard C I/O function: ferror

Syntax
 #include <stdio.h>
 int ferror(FILE *stream);

The ferror() function looks for errors with stream, returning zero if no errors have occured, and non-zero if there is an error. In
case of an error, use perror() to determine which error has occured.

C/C++ Language Reference

104 TR0173 (v4.0) April 6, 2009

Standard C I/O function: fflush

Syntax
 #include <stdio.h>
 int fflush(FILE *stream);

If the given file stream is an output stream, then fflush() causes the output buffer to be written to the file. If the given stream is
of the input type, then fflush() causes the input buffer to be cleared. fflush() is useful when debugging, if a program segfaults
before it has a chance to write output to the screen. Calling fflush(stdout) directly after debugging output will ensure that your
output is displayed at the correct time.
 printf("Before first call\n");
 fflush(stdout);
 shady_function();
 printf("Before second call\n");
 fflush(stdout);
 dangerous_dereference();

Standard C I/O function: fgetc

Syntax
 #include <stdio.h>
 int fgetc(FILE *stream);

The fgetc() function returns the next character from stream, or EOF if the end of file is reached or if there is an error.

Standard C I/O function: fgetpos

Syntax
 #include <stdio.h>
 int fgetpos(FILE *stream, fpos_t *position);

The fgetpos() function stores the file position indicator of the given file stream in the given position variable. The position
variable is of type fpos_t (which is defined in stdio.h) and is an object that can hold every possible position in a FILE. fgetpos()
returns zero upon success, and a non-zero value upon failure.

Standard C I/O function: fgets

Syntax
 #include <stdio.h>
 char *fgets(char *str, int num, FILE *stream);

The function fgets() reads up to num - 1 characters from the given file stream and dumps them into str. The string that fgets()
produces is always NULL-terminated. fgets() will stop when it reaches the end of a line, in which case str will contain that
newline character. Otherwise, fgets() will stop when it reaches num - 1 characters or encounters the EOF character. fgets()
returns str on success, and NULL on an error.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 105

Standard C I/O function: fopen

Syntax
 #include <stdio.h>
 FILE *fopen(const char *fname, const char *mode);

The fopen() function opens a file indicated by fname and returns a stream associated with that file. If there is an error, fopen()
returns NULL. mode is used to determine how the file will be treated (i.e. for input, output, etc)

Mode Meaning

"r" Open a text file for reading

"w" Create a text file for writing

"a" Append to a text file

"rb" Open a binary file for reading

"wb" Create a binary file for writing

"ab" Append to a binary file

"r+" Open a text file for read/write

"w+" Create a text file for read/write

"a+" Open a text file for read/write

"rb+" Open a binary file for read/write

"wb+" Create a binary file for read/write

"ab+" Open a binary file for read/write

An example:
 int ch;
 FILE *input = fopen("stuff", "r");
 ch = getc(input);

Standard C I/O function: fprintf

Syntax
 #include <stdio.h>
 int fprintf(FILE *stream, const char *format, ...);

The fprintf() function sends information (the arguments) according to the specified format to the file indicated by stream.
fprintf() works just like printf() as far as the format goes. The return value of fprintf() is the number of characters outputted, or a
negative number if an error occurs. An example:
 char name[20] = "Mary";
 FILE *out;
 out = fopen("output.txt", "w");
 if(out != NULL)
 fprintf(out, "Hello %s\n", name);

C/C++ Language Reference

106 TR0173 (v4.0) April 6, 2009

Standard C I/O function: fputc

Syntax
 #include <stdio.h>
 int fputc(int ch, FILE *stream);

The function fputc() writes the given character ch to the given output stream. The return value is the character, unless there is
an error, in which case the return value is EOF.

Standard C I/O function: fputs

Syntax
 #include <stdio.h>
 int fputs(const char *str, FILE *stream);

The fputs() function writes an array of characters pointed to by str to the given output stream. The return value is non-
negative on success, and EOF on failure.

Standard C I/O function: fread

Syntax
 #include <stdio.h>
 int fread(void *buffer, size_t size, size_t num, FILE *stream);

The function fread() reads num number of objects (where each object is size bytes) and places them into the array pointed to
by buffer. The data comes from the given input stream. The return value of the function is the number of things read. You can
use feof() or ferror() to figure out if an error occurs.

Standard C I/O function: freopen

Syntax
 #include <stdio.h>
 FILE *freopen(const char *fname, const char *mode, FILE *stream);

The freopen() function is used to reassign an existing stream to a different file and mode. After a call to this function, the given
file stream will refer to fname with access given by mode. The return value of freopen() is the new stream, or NULL if there is
an error.

Standard C I/O function: fscanf

Syntax
 #include <stdio.h>
 int fscanf(FILE *stream, const char *format, ...);

The function fscanf() reads data from the given file stream in a manner exactly like scanf(). The return value of fscanf() is the
number of variables that are actually assigned values, or EOF if no assignments could be made.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 107

Standard C I/O function: fseek

Syntax
 #include <stdio.h>
 int fseek(FILE *stream, long offset, int origin);

The function fseek() sets the file position data for the given stream. The origin value should have one of the following values
(defined in stdio.h):

Name Explanation

SEEK_SET Seek from the start of the file

SEEK_CUR Seek from the current location

SEEK_END Seek from the end of the file

fseek() returns zero upon success, non-zero on failure. You can use fseek() to move beyond a file, but not before the beginning.
Using fseek() clears the EOF flag associated with that stream.

Standard C I/O function: fsetpos

Syntax
 #include <stdio.h>
 int fsetpos(FILE *stream, const fpos_t *position);

The fsetpos() function moves the file position indicator for the given stream to a location specified by the position object.
fpos_t is defined in stdio.h. The return value for fsetpos() is zero upon success, non-zero on failure.

Standard C I/O function: ftell

Syntax
 #include <stdio.h>
 long ftell(FILE *stream);

The ftell() function returns the current file position for stream, or -1 if an error occurs.

Standard C I/O function: fwrite

Syntax
 #include <stdio.h>
 int fwrite(const void *buffer, size_t size, size_t count, FILE *stream);

The fwrite() function writes, from the array buffer, count objects of size size to stream. The return value is the number of
objects written.

C/C++ Language Reference

108 TR0173 (v4.0) April 6, 2009

Standard C I/O function: getc

Syntax
 #include <stdio.h>
 int getc(FILE *stream);

The getc() function returns the next character from stream, or EOF if the end of file is reached. getc() is identical to fgetc(). For
example:
 int ch;
 FILE *input = fopen("stuff", "r");

 ch = getc(input);
 while(ch != EOF)
 {
 printf("%c", ch);
 ch = getc(input);
 }

Standard C I/O function: getchar

Syntax
 #include <stdio.h>
 int getchar(void);

The getchar() function returns the next character from stdin, or EOF if the end of file is reached.

Standard C I/O function: gets

Syntax
 #include <stdio.h>
 char *gets(char *str);

The gets() function reads characters from stdin and loads them into str, until a newline or EOF is reached. The newline
character is translated into a null termination. The return value of gets() is the read-in string, or NULL if there is an error.
Note that gets() does not perform bounds checking, and thus risks overrunning str. For a similar (and safer) function that
includes bounds checking, see fgets().

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 109

Standard C I/O function: perror

Syntax
 #include <stdio.h>
 void perror(const char *str);

The perror() function prints str and an implementation-defined error message corresponding to the global variable errno. For
example:
 char* input_filename = "not_found.txt";
 FILE* input = fopen(input_filename, "r");
 if(input == NULL)
 {
 char error_msg[255];
 sprintf(error_msg, "Error opening file '%s'", input_filename);
 perror(error_msg);
 exit(-1);
 }

The the file called not_found.txt is not found, this code will produce the following output:
 Error opening file 'not_found.txt': No such file or directory

Standard C I/O function: printf

Syntax
 #include <stdio.h>
 int printf(const char *format, ...);

The printf() function prints output to stdout, according to format and other arguments passed to printf(). The string format
consists of two types of items - characters that will be printed to the screen, and format commands that define how the other
arguments to printf() are displayed. Basically, you specify a format string that has text in it, as well as "special" characters that
map to the other arguments of printf(). For example, this code
 char name[20] = "Bob";
 int age = 21;
 printf("Hello %s, you are %d years old\n", name, age);

displays the following output:
 Hello Bob, you are 21 years old

The %s means, "insert the first argument, a string, right here." The %d indicates that the second argument (an integer) should be
placed there. There are different %-codes for different variable types, as well as options to limit the length of the variables.

Code Format

%c character

%d signed integers

%i signed integers

%e scientific notation, with a lowercase "e"

%E scientific notation, with a uppercase "E"

%f floating point

C/C++ Language Reference

110 TR0173 (v4.0) April 6, 2009

%g use %e or %f, whichever is shorter

%G use %E or %f, whichever is shorter

%o octal

%s a string of characters

%u unsigned integer

%x unsigned hexadecimal, with lowercase letters

%X unsigned hexadecimal, with uppercase letters

%p a pointer

%n
the argument shall be a pointer to an integer into which is
placed the number of characters written so far

%% a '%' sign

An integer placed between a % sign and the format command acts as a minimum field width specifier, and pads the output with
spaces or zeros to make it long enough. If you want to pad with zeros, place a zero before the minimum field width specifier:
 %012d

You can also include a precision modifier, in the form of a .N where N is some number, before the format command:
 %012.4d

The precision modifier has different meanings depending on the format command being used:
• With %e, %E, and %f, the precision modifier lets you specify the number of decimal places desired. For example, %12.6f will

display a floating number at least 12 digits wide, with six decimal places.
• With %g and %G, the precision modifier determines the maximum number of significant digits displayed.
• With %s, the precision modifer simply acts as a maximumfield length, to complement the minimum field length that precedes

the period.

All of printf()'s output is right-justified, unless you place a minus sign right after the % sign. For example,
 %-12.4f

will display a floating point number with a minimum of 12 characters, 4 decimal places, and left justified. You may modify the %d,
%i, %o, %u, and %x type specifiers with the letter l (el) and the letter h to specify long and short data types (e.g. %hd means a
short integer). The %e, %f, and %g type specifiers can have the letter l before them to indicate that a double follows. The %g,
%f, and %e type specifiers can be preceded with the character '#' to ensure that the decimal point will be present, even if there
are no decimal digits. The use of the '#' character with the %x type specifier indicates that the hexidecimal number should be
printed with the '0x' prefix. The use of the '#' character with the %o type specifier indicates that the octal value should be
displayed with a 0 prefix.

Inserting a plus sign '+' into the type specifier will force positive values to be preceded by a '+' sign. Putting a space character ' '
there will force positive values to be preceded by a single space character.

You can also include constant escape sequences in the output string.

The return value of printf() is the number of characters printed, or a negative number if an error occurred.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 111

Standard C I/O function: putc

Syntax
 #include <stdio.h>
 int putc(int ch, FILE *stream);

The putc() function writes the character ch to stream. The return value is the character written, or EOF if there is an error. For
example:
 int ch;
 FILE *input, *output;
 input = fopen("tmp.c", "r");
 output = fopen("tmpCopy.c", "w");
 ch = getc(input);
 while(ch != EOF)
 {
 putc(ch, output);
 ch = getc(input);
 }
 fclose(input);
 fclose(output);

generates a copy of the file tmp.c called tmpCopy.c.

Standard C I/O function: putchar

Syntax
 #include <stdio.h>
 int putchar(int ch);

The putchar() function writes ch to stdout. The code
 putchar(ch);

is the same as
 putc(ch, stdout);

The return value of putchar() is the written character, or EOF if there is an error.

Standard C I/O function: puts

Syntax
 #include <stdio.h>
 int puts(char *str);

The function puts() writes str to stdout. puts() returns non-negative on success, or EOF on failure.

C/C++ Language Reference

112 TR0173 (v4.0) April 6, 2009

Standard C I/O function: remove

Syntax
 #include <stdio.h>
 int remove(const char *fname);

The remove() function erases the file specified by fname. The return value of remove() is zero upon success, and non-zero if
there is an error.

Standard C I/O function: rename

Syntax
 #include <stdio.h>
 int rename(const char *oldfname, const char *newfname);

The function rename() changes the name of the file oldfname to newfname. The return value of rename() is zero upon
success, non-zero on error.

Standard C I/O function: rewind

Syntax
 #include <stdio.h>
 void rewind(FILE *stream);

The function rewind() moves the file position indicator to the beginning of the specified stream, also clearing the error and EOF
flags associated with that stream.

Standard C I/O function: scanf

Syntax
 #include <stdio.h>
 int scanf(const char *format, ...);

The scanf() function reads input from stdin, according to the given format, and stores the data in the other arguments. It works
a lot like printf(). The format string consists of control characters, whitespace characters, and non-whitespace characters. The
control characters are preceded by a % sign, and are as follows:

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 113

Control Character Explanation

%c a single character

%d a decimal integer

%i an integer

%e, %f, %g a floating-point number

%lf a double

%o an octal number

%s a string

%x a hexadecimal number

%p a pointer

%n an integer equal to the number of characters read so far

%u an unsigned integer

%[] a set of characters

%% a percent sign

scanf() reads the input, matching the characters from format. When a control character is read, it puts the value in the next
variable. Whitespace (tabs, spaces, etc) are skipped. Non-whitespace characters are matched to the input, then discarded. If a
number comes between the % sign and the control character, then only that many characters will be converted into the variable.
If scanf() encounters a set of characters, denoted by the %[] control character, then any characters found within the brackets
are read into the variable. The return value of scanf() is the number of variables that were successfully assigned values, or EOF
if there is an error.

Example
This code snippet uses scanf() to read an int, float, and a double from the user. Note that the variable arguments to scanf() are
passed in by address, as denoted by the ampersand (&) preceding each variable:
 int i;
 float f;
 double d;

 printf("Enter an integer: ");
 scanf("%d", &i);

 printf("Enter a float: ");
 scanf("%f", &f);

 printf("Enter a double: ");
 scanf("%lf", &d);

 printf("You entered %d, %f, and %f\n", i, f, d);

Standard C I/O function: setbuf

Syntax
 #include <stdio.h>
 void setbuf(FILE *stream, char *buffer);

The setbuf() function sets stream to use buffer, or, if buffer is null, turns off buffering. If a non-standard buffer size is used,
it should be BUFSIZ characters long.

C/C++ Language Reference

114 TR0173 (v4.0) April 6, 2009

Standard C I/O function: setvbuf

Syntax
 #include <stdio.h>
 int setvbuf(FILE *stream, char *buffer, int mode, size_t size);

The function setvbuf() sets the buffer for stream to be buffer, with a size of size. mode can be:

• _IOFBF, which indicates full buffering

• _IOLBF, which means line buffering

• _IONBF, which means no buffering

Standard C I/O function: sprintf

Syntax
 #include <stdio.h>
 int sprintf(char *buffer, const char *format, ...);

The sprintf() function is just like printf(), except that the output is sent to buffer. The return value is the number of characters
written. For example:
 char string[50];
 int file_number = 0;

 sprintf(string, "file.%d", file_number);
 file_number++;
 output_file = fopen(string, "w");

Note that sprintf() does the opposite of a function like atoi() -- where atoi() converts a string into a number, sprintf() can be used
to convert a number into a string.

For example, the following code uses sprintf() to convert an integer into a string of characters:
 char result[100];
 int num = 24;
 sprintf(result, "%d", num);

This code is similar, except that it converts a floating-point number into an array of characters:
 char result[100];
 float fnum = 3.14159;
 sprintf(result, "%f", fnum);

Standard C I/O function: sscanf

Syntax
 #include <stdio.h>
 int sscanf(const char *buffer, const char *format, ...);

The function sscanf() is just like scanf(), except that the input is read from buffer.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 115

Standard C I/O function: tmpfile

Syntax
 #include <stdio.h>
 FILE *tmpfile(void);

The function tmpfile() opens a temporary file with an unique filename and returns a pointer to that file. If there is an error, null is
returned.

Standard C I/O function: tmpnam

Syntax
 #include <stdio.h>
 char *tmpnam(char *name);

The tmpnam() function creates an unique filename and stores it in name. tmpnam() can be called up to TMP_MAX times.

Standard C I/O function: ungetc

Syntax
 #include <stdio.h>
 int ungetc(int ch, FILE *stream);

The function ungetc() puts the character ch back in stream.

Standard C I/O function: vprintf, vfprintf, and vsprintf

Syntax
 #include <stdarg.h>
 #include <stdio.h>
 int vprintf(char *format, va_list arg_ptr);
 int vfprintf(FILE *stream, const char *format, va_list arg_ptr);
 int vsprintf(char *buffer, char *format, va_list arg_ptr);

These functions are very much like printf(), fprintf(), and sprintf(). The difference is that the argument list is a pointer to a list of
arguments. va_list is defined in stdarg.h, and is also used by (Other Standard C Functions) va_arg(). For example:
 void error(char *fmt, ...)
 {
 va_list args;
 va_start(args, fmt);
 fprintf(stderr, "Error: ");
 vfprintf(stderr, fmt, args);
 fprintf(stderr, "\n");
 va_end(args);
 exit(1);
 }

C/C++ Language Reference

116 TR0173 (v4.0) April 6, 2009

Standard C Math Functions
The following is a list of all Standard C Math functions.

abs absolute value

acos arc cosine

asin arc sine

atan arc tangent

atan2 arc tangent, using signs to determine quadrants

ceil the smallest integer not less than a certain value

cos cosine

cosh hyperbolic cosine

div returns the quotient and remainder of a division

exp returns "e" raised to a given power

fabs absolute value for floating-point numbers

floor returns the largest integer not greater than a given value

fmod returns the remainder of a division

frexp decomposes a number into scientific notation

labs absolute value for long integers

ldexp computes a number in scientific notation

ldiv returns the quotient and remainder of a division, in long integer form

log natural logarithm (to base e)

log10 common logarithm (to base 10)

modf decomposes a number into integer and fractional parts

pow returns a given number raised to another number

sin sine

sinh hyperbolic sine

sqrt square root

tan tangent

tanh hyperbolic tangent

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 117

Standard C math function: abs

Syntax
 #include <stdlib.h>
 int abs(int num);

The abs() function returns the absolute value of num. For example:
 int magic_number = 10;
 printf("Enter a guess: ");
 scanf("%d", &x);
 printf("Your guess was %d away from the magic number.\n", abs(magic_number - x));

Standard C math function: acos

Syntax
 #include <math.h>
 double acos(double arg);

The acos() function returns the arc cosine of arg, which will be in the range [0, pi]. arg should be between -1 and 1. If arg is
outside this range, acos() returns NAN and raises a floating-point exception.

Standard C math function: asin

Syntax
 #include <math.h>
 double asin(double arg);

The asin() function returns the arc sine of arg, which will be in the range [-pi/2, +pi/2]. arg should be between -1 and 1. If arg
is outside this range, asin() returns NAN and raises a floating-point exception.

Standard C math function: atan

Syntax
 #include <math.h>
 double atan(double arg);

The function atan() returns the arc tangent of arg, which will be in the range [-pi/2, +pi/2].

Standard C math function: atan2

Syntax
 #include <math.h>
 double atan2(double y, double x);

The atan2() function computes the arc tangent of y/x, using the signs of the arguments to compute the quadrant of the return
value.

Note the order of the arguments passed to this function.

C/C++ Language Reference

118 TR0173 (v4.0) April 6, 2009

Standard C math function: ceil

Syntax
 #include <math.h>
 double ceil(double num);

The ceil() function returns the smallest integer no less than num. For example,
 y = 6.04;
 x = ceil(y);

would set x to 7.0.

Standard C math function: cos

Syntax
 #include <math.h>
 double cos(double arg);

The cos() function returns the cosine of arg, where arg is expressed in radians. The return value of cos() is in the range [-1,1].
If arg is infinite, cos() will return NAN and raise a floating-point exception.

Standard C math function: cosh

Syntax
 #include <math.h>
 double cosh(double arg);

The function cosh() returns the hyperbolic cosine of arg.

Standard C math function: div

Syntax
 #include <stdlib.h>
 div_t div(int numerator, int denominator);

The function div() returns the quotient and remainder of the operation numerator / denominator. The div_t structure is
defined in stdlib.h, and has at least:
 int quot; // The quotient
 int rem; // The remainder

For example, the following code displays the quotient and remainder of x/y:
 div_t temp;
 temp = div(x, y);
 printf("%d divided by %d yields %d with a remainder of %d\n",
 x, y, temp.quot, temp.rem);

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 119

Standard C math function: exp

Syntax
 #include <math.h>
 double exp(double arg);

The exp() function returns e (2.7182818) raised to the argth power.

Standard C math function: fabs

Syntax
 #include <math.h>
 double fabs(double arg);

The function fabs() returns the absolute value of arg.

Standard C math function: floor

Syntax
 #include <math.h>
 double floor(double arg);

The function floor() returns the largest integer not greater than arg. For example,
 y = 6.04;
 x = floor(y);

would result in x being set to 6.0.

Standard C math function: fmod

Syntax
 #include <math.h>
 double fmod(double x, double y);

The fmod() function returns the remainder of x/y.

Standard C math function: frexp

Syntax
 #include <math.h>
 double frexp(double num, int* exp);

The function frexp() is used to decompose num into two parts: a mantissa between 0.5 and 1 (returned by the function) and an
exponent returned as exp. Scientific notation works like this:
 num = mantissa * (2 ^ exp)

C/C++ Language Reference

120 TR0173 (v4.0) April 6, 2009

Standard C math function: labs

Syntax
 #include <stdlib.h>
 long labs(long num);

The function labs() returns the absolute value of num.

Standard C math function: ldexp

Syntax
 #include <math.h>
 double ldexp(double num, int exp);

The ldexp() function returns num * (2 ^ exp). And get this: if an overflow occurs, HUGE_VAL is returned.

Standard C math function: ldiv

Syntax
 #include <stdlib.h>
 ldiv_t ldiv(long numerator, long denominator);

Testing: adiv_t, div_t, ldiv_t.
The ldiv() function returns the quotient and remainder of the operation numerator / denominator. The ldiv_t structure is
defined in stdlib.h and has at least:
 long quot; // the quotient
 long rem; // the remainder

Standard C math function: log

Syntax
 #include <math.h>
 double log(double num);

The function log() returns the natural (base e) logarithm of num. There's a domain error if num is negative, a range error if num is
zero.
In order to calculate the logarithm of x to an arbitrary base b, you can use:
 double answer = log(x) / log(b);

Standard C math function: log10

Syntax
 #include <math.h>
 double log10(double num);

The log10() function returns the base 10 (or common) logarithm for num. There's a domain error if num is negative, a range error
if num is zero.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 121

Standard C math function: modf

Syntax
 #include <math.h>
 double modf(double num, double *i);

The function modf() splits num into its integer and fraction parts. It returns the fractional part and loads the integer part into i.

Standard C math function: pow

Syntax
 #include <math.h>
 double pow(double base, double exp);

The pow() function returns base raised to the expth power. There's a domain error if base is zero and exp is less than or equal
to zero. There's also a domain error if base is negative and exp is not an integer. There's a range error if an overflow occurs.

Standard C math function: sin

Syntax
 #include <math.h>
 double sin(double arg);

The function sin() returns the sine of arg, where arg is given in radians. The return value of sin() will be in the range [-1,1]. If
arg is infinite, sin() will return NAN and raise a floating-point exception.

Standard C math function: sinh

Syntax
 #include <math.h>
 double sinh(double arg);

The function sinh() returns the hyperbolic sine of arg.

Standard C math function: sqrt

Syntax
 #include <math.h>
 double sqrt(double num);

The sqrt() function returns the square root of num. If num is negative, a domain error occurs.

C/C++ Language Reference

122 TR0173 (v4.0) April 6, 2009

Standard C math function: tan

Syntax
 #include <math.h>
 double tan(double arg);

The tan() function returns the tangent of arg, where arg is given in radians. If arg is infinite, tan() will return NAN and raise a
floating-point exception.

Standard C math function: tanh

Syntax
 #include <math.h>
 double tanh(double arg);

The function tanh() returns the hyperbolic tangent of arg.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 123

Standard C Memory Functions
The following is a list of all Standard C Memory functions.

calloc allocates and clears a two-dimensional chunk of memory

free returns previously allocated memory to the operating system

malloc allocates memory

realloc changes the size of previously allocated memory

Standard C memory function: calloc

Syntax
 #include <stdlib.h>
 void* calloc(size_t num, size_t size);

The calloc() function returns a pointer to space for an array of num objects, each of size size. The newly allocated memory is
initialized to zero.
calloc() returns NULL if there is an error.

Standard C memory function: free

Syntax
 #include <stdlib.h>
 void free(void* ptr);

The free() function deallocates the space pointed to by ptr, freeing it up for future use. ptr must have been used in a previous
call to malloc(), calloc(), or realloc(). An example:
 typedef struct data_type
 {
 int age;
 char name[20];
 } data;

 data *willy;
 willy = (data*) malloc(sizeof(*willy));
 ...
 free(willy);

C/C++ Language Reference

124 TR0173 (v4.0) April 6, 2009

Standard C memory function: malloc

Syntax
 #include <stdlib.h>
 void *malloc(size_t size);

The function malloc() returns a pointer to a chunk of memory of size size, or NULL if there is an error. The memory pointed to
will be on the heap, not the stack, so make sure to free it when you are done with it. An example:
 typedef struct data_type
 {
 int age;
 char name[20];
 } data;

 data *bob;
 bob = (data*) malloc(sizeof(data));
 if(bob != NULL)
 {
 bob->age = 22;
 strcpy(bob->name, "Robert");
 printf("%s is %d years old\n", bob->name, bob->age);
 }
 free(bob);

Standard C memory function: realloc

Syntax
 #include <stdlib.h>
 void *realloc(void *ptr, size_t size);

The realloc() function changes the size of the object pointed to by ptr to the given size. size can be any size, larger or smaller
than the original. The return value is a pointer to the new space, or NULL if there is an error.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 125

Standard C String and Character Functions
The following is a list of all Standard C String and Character functions.

atof converts a string to a double

atoi converts a string to an integer

atol converts a string to a long

isalnum true if a character is alphanumeric

isalpha true if a character is alphabetic

iscntrl true if a character is a control character

isdigit true if a character is a digit

isgraph true if a character is a graphical character

islower true if a character is lowercase

isprint true if a character is a printing character

ispunct true if a character is punctuation

isspace true if a character is a space character

isupper true if a character is an uppercase character

isxdigit true if a character is a hexidecimal character

memchr searches an array for the first occurance of a character

memcmp compares two buffers

memcpy copies one buffer to another

memmove moves one buffer to another

memset fills a buffer with a character

strcat concatenates two strings

strchr finds the first occurance of a character in a string

strcmp compares two strings

strcoll compares two strings in accordance to the current locale

strcpy copies one string to another

strcspn searches one string for any characters in another

strerror returns a text version of a given error code

strlen returns the length of a given string

strncat concatenates a certain amount of characters of two strings

strncmp compares a certain amount of characters of two strings

strncpy copies a certain amount of characters from one string to another

strpbrk finds the first location of any character in one string, in another string

strrchr finds the last occurance of a character in a string

strspn returns the length of a substring of characters of a string

strstr finds the first occurance of a substring of characters

strtod converts a string to a double

strtok finds the next token in a string

C/C++ Language Reference

126 TR0173 (v4.0) April 6, 2009

strtol converts a string to a long

strtoul converts a string to an unsigned long

strxfrm converts a substring so that it can be used by string comparison functions

tolower converts a character to lowercase

toupper converts a character to uppercase

Standard C string and character function: atof

Syntax
 #include <stdlib.h>
 double atof(const char *str);

The function atof() converts str into a double, then returns that value. str must start with a valid number, but can be
terminated with any non-numerical character, other than "E" or "e". For example,
 x = atof("42.0is_the_answer");

results in x being set to 42.0.

Standard C string and character function: atoi

Syntax
 #include <stdlib.h>
 int atoi(const char *str);

The atoi() function converts str into an integer, and returns that integer. str should start with whitespace or some sort of
number, and atoi() will stop reading from str as soon as a non-numerical character has been read. For example:
 int i;
 i = atoi("512");
 i = atoi("512.035");
 i = atoi(" 512.035");
 i = atoi(" 512+34");
 i = atoi(" 512 bottles of beer on the wall");

All five of the above assignments to the variable i would result in it being set to 512.

If the conversion cannot be performed, then atoi() will return zero:
 int i = atoi(" does not work: 512"); // results in i == 0

You can use sprintf() to convert a number into a string.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 127

Standard C string and character function: atol

Syntax
 #include <stdlib.h>
 long atol(const char *str);

The function atol() converts str into a long, then returns that value. atol() will read from str until it finds any character that
should not be in a long. The resulting truncated value is then converted and returned. For example,
 x = atol("1024.0001");

results in x being set to 1024L.

Standard C string and character function: isalnum

Syntax
 #include <ctype.h>
 int isalnum(int ch);

The function isalnum() returns non-zero if its argument is a numeric digit or a letter of the alphabet. Otherwise, zero is returned.
 char c;
 scanf("%c", &c);
 if(isalnum(c))
 printf("You entered the alphanumeric character %c\n", c);

Standard C string and character function: isalpha

Syntax
 #include <ctype.h>
 int isalpha(int ch);

The function isalpha() returns non-zero if its argument is a letter of the alphabet. Otherwise, zero is returned.
 char c;
 scanf("%c", &c);
 if(isalpha(c))
 printf("You entered a letter of the alphabet\n");

Standard C string and character function: iscntrl

Syntax
 #include <ctype.h>
 int iscntrl(int ch);

The iscntrl() function returns non-zero if its argument is a control character (between 0 and 0x1F or equal to 0x7F). Otherwise,
zero is returned.

C/C++ Language Reference

128 TR0173 (v4.0) April 6, 2009

Standard C string and character function: isdigit

Syntax
 #include <ctype.h>
 int isdigit(int ch);

The function isdigit() returns non-zero if its argument is a digit between 0 and 9. Otherwise, zero is returned.
 char c;
 scanf("%c", &c);
 if(isdigit(c))
 printf("You entered the digit %c\n", c);

Standard C string and character function: isgraph

Syntax
 #include <ctype.h>
 int isgraph(int ch);

The function isgraph() returns non-zero if its argument is any printable character other than a space (if you can see the
character, then isgraph() will return a non-zero value). Otherwise, zero is returned.

Standard C string and character function: islower

Syntax
 #include <ctype.h>
 int islower(int ch);

The islower() function returns non-zero if its argument is a lowercase letter. Otherwise, zero is returned.

Standard C string and character function: isprint

Syntax
 #include <ctype.h>
 int isprint(int ch);

The function isprint() returns non-zero if its argument is a printable character (including a space). Otherwise, zero is returned.

Standard C string and character function: ispunct

Syntax
 #include <ctype.h>
 int ispunct(int ch);

The ispunct() function returns non-zero if its argument is a printing character but neither alphanumeric nor a space. Otherwise,
zero is returned.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 129

Standard C string and character function: isspace

Syntax
 #include <ctype.h>
 int isspace(int ch);

The isspace() function returns non-zero if its argument is some sort of space (i.e. single space, tab, vertical tab, form feed,
carriage return, or newline). Otherwise, zero is returned.

Standard C string and character function: isupper

Syntax
 #include <ctype.h>
 int isupper(int ch);

The isupper() function returns non-zero if its argument is an uppercase letter. Otherwise, zero is returned.

Standard C string and character function: isxdigit

Syntax
 #include <ctype.h>
 int isxdigit(int ch);

The function isxdigit() returns non-zero if its argument is a hexidecimal digit (i.e. A-F, a-f, or 0-9). Otherwise, zero is returned.

Standard C string and character function: memchr

Syntax
 #include <string.h>
 void *memchr(const void *buffer, int ch, size_t count);

The memchr() function looks for the first occurrence of ch within count characters in the array pointed to by buffer. The
return value points to the location of the first occurrence of ch, or NULL if ch isn't found. For example:
 char names[] = "Alan Bob Chris X Dave";
 if(memchr(names,'X',strlen(names)) == NULL)
 printf("Didn't find an X\n");
 else
 printf("Found an X\n");

C/C++ Language Reference

130 TR0173 (v4.0) April 6, 2009

Standard C string and character function: memcmp

Syntax
 #include <string.h>
 int memcmp(const void *buffer1, const void *buffer2, size_t count);

The function memcmp() compares the first count characters of buffer1 and buffer2. The return values are as follows:

Value Explanation

less than 0 buffer1 is less than buffer2

equal to 0 buffer1 is equal to buffer2

greater than 0 buffer1 is greater than buffer2

Standard C string and character function: memcpy

Syntax
 #include <string.h>
 void *memcpy(void *to, const void *from, size_t count);

The function memcpy() copies count characters from the array from to the array to. The return value of memcpy() is to. The
behavior of memcpy() is undefined if to and from overlap.

Standard C string and character function: memmove

Syntax
 #include <string.h>
 void *memmove(void *to, const void *from, size_t count);

The memmove() function is identical to memcpy(), except that it works even if to and from overlap.

Standard C string and character function: memset

Syntax
 #include <string.h>
 void* memset(void* buffer, int ch, size_t count);

The function memset() copies ch into the first count characters of buffer, and returns buffer. memset() is useful for
intializing a section of memory to some value. For example, this command:
 const int ARRAY_LENGTH;
 char the_array[ARRAY_LENGTH];
 ...
 // zero out the contents of the_array
 memset(the_array, '\0', ARRAY_LENGTH);

...is a very efficient way to set all values of the_array to zero.

The table below compares two different methods for initializing an array of characters: a for-loop versus memset(). As the size of
the data being initialized increases, memset() clearly gets the job done much more quickly:

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 131

Input size Initialized with a for-loop Initialized with memset()

1000 0.016 0.017

10000 0.055 0.013

100000 0.443 0.029

1000000 4.337 0.291

Standard C string and character function: strcat

Syntax
 #include <string.h>
 char *strcat(char *str1, const char *str2);

The strcat() function concatenates str2 onto the end of str1, and returns str1. For example:
 printf("Enter your name: ");
 scanf("%s", name);
 title = strcat(name, " the Great");
 printf("Hello, %s\n", title);

Note that strcat() does not perform bounds checking, and thus risks overrunning str1 or str2. For a similar (and safer)
function that includes bounds checking, see strncat().

Another set of related (but non-standard) functions are strlcpy and strlcat.

Standard C string and character function: strchr

Syntax
 #include <string.h>
 char *strchr(const char *str, int ch);

The function strchr() returns a pointer to the first occurence of ch in str, or NULL if ch is not found.

Standard C string and character function: strcmp

Syntax
 #include <string.h>
 int strcmp(const char *str1, const char *str2);

The function strcmp() compares str1 and str2, then returns:

Return value Explanation

less than 0 ''str1'' is less than ''str2''

equal to 0 ''str1'' is equal to ''str2''

greater than 0 ''str1'' is greater than ''str2''

C/C++ Language Reference

132 TR0173 (v4.0) April 6, 2009

For example:
 printf("Enter your name: ");
 scanf("%s", name);
 if(strcmp(name, "Mary") == 0)
 {
 printf("Hello, Dr. Mary!\n");
 }

Note that if str1 or str2 are missing a null-termination character, then strcmp() may not produce valid results. For a similar
(and safer) function that includes explicit bounds checking, see strncmp().

Standard C string and character function: strcoll

Syntax
 #include <string.h>
 int strcoll(const char *str1, const char *str2);

The strcoll() function compares str1 and str2, much like strcmp(). However, strcoll() performs the comparison using the locale
specified by the (Standard C Date & Time) setlocale() function.

 (Standard C Date &

Standard C string and character function: strcpy

Syntax
 #include <string.h>
 char *strcpy(char *to, const char *from);

The strcpy() function copies characters in the string from to the string to, including the null termination. The return value is to.
Note that strcpy() does not perform bounds checking, and thus risks overrunning from or to. For a similar (and safer) function
that includes bounds checking, see strncpy().

Another set of related (but non-standard) functions are strlcpy and strlcat.

Standard C string and character function: strcspn

Syntax
 #include <string.h>
 size_t strcspn(const char *str1, const char *str2);

The function strcspn() returns the index of the first character in str1 that matches any of the characters in str2.

Standard C string and character function: strerror

Syntax
 #include <string.h>
 char *strerror(int num);

The function strerror() returns an implementation defined string corresponding to num.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 133

Standard C string and character function: strlen

Syntax
 #include <string.h>
 size_t strlen(char *str);

The strlen() function returns the length of str (determined by the number of characters before null termination).

Standard C string and character function: strncat

Syntax
 #include <string.h>
 char *strncat(char *str1, const char *str2, size_t count);

The function strncat() concatenates at most count characters of str2 onto str1, adding a null termination. The resulting string
is returned.

Another set of related (but non-standard) functions are strlcpy and strlcat.

Standard C string and character function: strncmp

Syntax
 #include <string.h>
 int strncmp(const char *str1, const char *str2, size_t count);

The strncmp() function compares at most count characters of str1 and str2. The return value is as follows:

Return value Explanation

less than 0 ''str1'' is less than ''str2''

equal to 0 ''str1'' is equal to ''str2''

greater than 0 ''str1'' is greater than str2''

If there are less than count characters in either string, then the comparison will stop after the first null termination is
encountered.

Standard C string and character function: strncpy

Syntax
 #include <string.h>
 char *strncpy(char *to, const char *from, size_t count);

The strncpy() function copies at most count characters of from to the string to. If from has less than count characters, the
remainder is padded with '\0' characters. The return value is the resulting string.

Another set of related (but non-standard) functions are strlcpy and strlcat.

C/C++ Language Reference

134 TR0173 (v4.0) April 6, 2009

Standard C string and character function: strpbrk

Syntax
 #include <string.h>
 char* strpbrk(const char* str1, const char* str2);

The function strpbrk() returns a pointer to the first ocurrence in str1 of any character in str2, or NULL if no such characters
are present.

Standard C string and character function: strrchr

Syntax
 #include <string.h>
 char *strrchr(const char *str, int ch);

The function strrchr() returns a pointer to the last occurrence of ch in str, or NULL if no match is found.

Standard C string and character function: strspn

Syntax
 #include <string.h>
 size_t strspn(const char *str1, const char *str2);

The strspn() function returns the index of the first character in str1 that doesn't match any character in str2.

Standard C string and character function: strstr

Syntax
 #include <string.h>
 char *strstr(const char *str1, const char *str2);

The function strstr() returns a pointer to the first occurrence of str2 in str1, or NULL if no match is found. If the length of str2
is zero, then strstr() will simply return str1.

For example, the following code checks for the existence of one string within another string:
 char* str1 = "this is a string of characters";
 char* str2 = "a string";
 char* result = strstr(str1, str2);
 if(result == NULL) printf("Could not find '%s' in '%s'\n", str2, str1);
 else printf("Found a substring: '%s'\n", result);

When run, the above code displays this output:
 Found a substring: 'a string of characters'

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 135

Standard C string and character function: strtod

Syntax
 #include <stdlib.h>
 double strtod(const char *start, char **end);

The function strtod() returns whatever it encounters first in start as a double. end is set to point at whatever is left in start
after that double. If overflow occurs, strtod() returns either HUGE_VAL or -HUGE_VAL.

Standard C string and character function: strtok

Syntax
 #include <string.h>
 char *strtok(char *str1, const char *str2);

The strtok() function returns a pointer to the next "token" in str1, where str2 contains the delimiters that determine the token.
strtok() returns NULL if no token is found. In order to convert a string to tokens, the first call to strtok() should have str1 point
to the string to be tokenized. All calls after this should have str1 be NULL.

For example:
 char str[] = "now # is the time for all # good men to come to the # aid of their country";
 char delims[] = "#";
 char *result = NULL;
 result = strtok(str, delims);
 while(result != NULL)
 {
 printf("result is \"%s\"\n", result);
 result = strtok(NULL, delims);
 }

The above code will display the following output:
 result is "now "
 result is " is the time for all "
 result is " good men to come to the "
 result is " aid of their country"

Standard C string and character function: strtol

Syntax
 #include <stdlib.h>
 long strtol(const char *start, char **end, int base);

The strtol() function returns whatever it encounters first in start as a long, doing the conversion to base if necessary. end is
set to point to whatever is left in start after the long. If the result can not be represented by a long, then strtol() returns either
LONG_MAX or LONG_MIN. Zero is returned upon error.

C/C++ Language Reference

136 TR0173 (v4.0) April 6, 2009

Standard C string and character function: strtoul

Syntax
 #include <stdlib.h>
 unsigned long strtoul(const char *start, char **end, int base);

The function strtoul() behaves exactly like strtol(), except that it returns an unsigned long rather than a mere long.

Standard C string and character function: strxfrm

Syntax
 #include <string.h>
 size_t strxfrm(char *str1, const char *str2, size_t num);

The strxfrm() function manipulates the first num characters of str2 and stores them in str1. The result is such that if a strcoll()
is performed on str1 and the old str2, you will get the same result as with a strcmp().

Standard C string and character function: tolower

Syntax
 #include <ctype.h>
 int tolower(int ch);

The function tolower() returns the lowercase version of the character ch.

Standard C string and character function: toupper

Syntax
 #include <ctype.h>
 int toupper(int ch);

The toupper() function returns the uppercase version of the character ch.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 137

Other Standard C Functions
The following is a list of all other standard C functions.

abort stops the program

assert stops the program if an expression isn't true

atexit sets a function to be called when the program exits

bsearch perform a binary search

exit stop the program

getenv get enviornment information about a variable

longjmp start execution at a certain point in the program

qsort perform a quicksort

raise send a signal to the program

rand returns a pseudorandom number

setjmp set execution to start at a certain point

signal register a function as a signal handler

srand initialize the random number generator

system perform a system call

va_arg use variable length parameter lists

Standard C function: abort

Syntax
 #include <stdlib.h>
 void abort(void);

The function abort() terminates the current program. Depending on the implementation, the return value can indicate failure.

Standard C function: assert

Syntax
 #include <assert.h>
 assert(exp);

The assert() macro is used to test for errors. If exp evaluates to zero, assert() writes information to stderr and exits the
program. If the macro NDEBUG is defined, the assert() macros will be ignored.

C/C++ Language Reference

138 TR0173 (v4.0) April 6, 2009

Standard C function: atexit

Syntax
 #include <stdlib.h>
 int atexit(void (*func)(void));

The function atexit() causes the function pointed to by func to be called when the program terminates. You can make multiple
calls to atexit() (at least 32, depending on your compiler) and those functions will be called in reverse order of their
establishment. The return value of atexit() is zero upon success, and non-zero on failure.

Standard C function: bsearch

Syntax
 #include <stdlib.h>
 void *bsearch(const void *key, const void *buf, size_t num, size_t size, int
(*compare)(const void *, const void *));

The bsearch() function searches buf[0] to buf[num-1] for an item that matches key, using a binary search. The function
compare should return negative if its first argument is less than its second, zero if equal, and positive if greater. The items in the
array buf should be in ascending order. The return value of bsearch() is a pointer to the matching item, or NULL if none is
found.

Standard C function: exit

Syntax
 #include <stdlib.h>
 void exit(int exit_code);

The exit() function stops the program. exit_code is passed on to be the return value of the program, where usually zero
indicates success and non-zero indicates an error.

Standard C function: getenv

Syntax
 #include <stdlib.h>
 char *getenv(const char *name);

The function getenv() returns environmental information associated with name, and is very implementation dependent. NULL is
returned if no information about name is available.

Standard C function: longjmp

Syntax
 #include <setjmp.h>
 void longjmp(jmp_buf envbuf, int status);

The function longjmp() causes the program to start executing code at the point of the last call to setjmp(). envbuf is usually set
through a call to setjmp(). status becomes the return value of setjmp() and can be used to figure out where longjmp() came
from. status should not be set to zero.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 139

Standard C function: qsort

Syntax
 #include <stdlib.h>
 void qsort(void *buf, size_t num, size_t size, int (*compare)(const void *, const void *)
);

The qsort() function sorts buf (which contains num items, each of size size) using Quicksort. The compare function is used to
compare the items in buf. compare should return negative if the first argument is less than the second, zero if they are equal,
and positive if the first argument is greater than the second. qsort() sorts buf in ascending order.

Example
For example, the following bit of code uses qsort() to sort an array of integers:
 int compare_ints(const void* a, const void* b)
 {
 int* arg1 = (int*) a;
 int* arg2 = (int*) b;
 if(*arg1 < *arg2) return -1;
 else if(*arg1 == *arg2) return 0;
 else return 1;
 }

 int array[] = { -2, 99, 0, -743, 2, 3, 4 };
 int array_size = 7;

 ...

 printf("Before sorting: ");
 for(int i = 0; i < array_size; i++)
 {
 printf("%d ", array[i]);
 }
 printf("\n");

 qsort(array, array_size, sizeof(int), compare_ints);

 printf("After sorting: ");
 for(int i = 0; i < array_size; i++)
 {
 printf("%d ", array[i]);
 }
 printf("\n");

When run, this code displays the following output:
 Before sorting: -2 99 0 -743 2 3 4
 After sorting: -743 -2 0 2 3 4 99

C/C++ Language Reference

140 TR0173 (v4.0) April 6, 2009

Standard C function: raise

Syntax
 #include <signal.h>
 int raise(int signal);

The raise() function sends the specified signal to the program. Some signals:

Signal Meaning

SIGABRT Termination error

SIGFPE Floating pointer error

SIGILL Bad instruction

SIGINT User presed CTRL-C

SIGSEGV Illegal memory access

SIGTERM Terminate program

The return value is zero upon success, nonzero on failure.

Standard C function: rand

Syntax
 #include <stdlib.h>
 int rand(void);

The function rand() returns a pseudorandom integer between zero and RAND_MAX. An example:
 srand(time(NULL));
 for(i = 0; i < 10; i++)
 printf("Random number #%d: %d\n", i, rand());

Standard C function: setjmp

Syntax
 #include <setjmp.h>
 int setjmp(jmp_buf envbuf);

The setjmp() function saves the system stack in envbuf for use by a later call to longjmp(). When you first call setjmp(), its
return value is zero. Later, when you call longjmp(), the second argument of longjmp() is what the return value of setjmp() will
be. Confused? Read about longjmp().

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 141

Standard C function: signal

Syntax
 #include <signal.h>
 void (*signal(int signal, void (* func) (int))) (int);

The signal() function sets func to be called when signal is recieved by your program. func can be a custom signal handler,
or one of these macros (defined in signal.h):

Macro Explanation

SIG_DFL default signal handling

SIG_IGN ignore the signal

Some basic signals that you can attach a signal handler to are:

Signal Description

SIGTERM Generic stop signal that can be caught.

SIGINT Interrupt program, normally ctrl-c.

SIGQUIT Interrupt program, similar to SIGINT.

SIGKILL Stops the program. Cannot be caught.

SIGHUP Reports a disconnected terminal.

The return value of signal() is the address of the previously defined function for this signal, or SIG_ERR is there is an error.

Example
The following example uses the signal() function to call an arbitrary number of functions when the user aborts the program. The
functions are stored in a vector, and a single "clean-up" function calls each function in that vector of functions when the program
is aborted:
 void f1()
 {
 printf("calling f1()...\n");
 }

 void f2()
 {
 printf("calling f2()...\n");
 }

 typedef void(*endFunc)(void);
 vector<endFunc> endFuncs;

 void cleanUp(int dummy)
 {
 for(unsigned int i = 0; i < endFuncs.size(); i++)
 {
 endFunc f = endFuncs.at(i);
 (*f)();
 }
 exit(-1);
 }

C/C++ Language Reference

142 TR0173 (v4.0) April 6, 2009

 int main()
 {

 // connect various signals to our clean-up function
 signal(SIGTERM, cleanUp);
 signal(SIGINT, cleanUp);
 signal(SIGQUIT, cleanUp);
 signal(SIGHUP, cleanUp);

 // add two specific clean-up functions to a list of functions
 endFuncs.push_back(f1);
 endFuncs.push_back(f2);

 // loop until the user breaks
 while(1);

 return 0;
 }

Standard C function: srand

Syntax
 #include <stdlib.h>
 void srand(unsigned seed);

The function srand() is used to seed the random sequence generated by rand(). For any given seed, rand() will generate a
specific "random" sequence over and over again.
 srand(time(NULL));
 for(i = 0; i < 10; i++)
 printf("Random number #%d: %d\n", i, rand());

 (Standard C Date &

Standard C function: system

Syntax
 #include <stdlib.h>
 int system(const char *command);

The system() function runs the given command by passing it to the default command interpreter.
The return value is usually zero if the command executed without errors. If command is NULL, system() will test to see if there is
a command interpreter available. Non-zero will be returned if there is a command interpreter available, zero if not.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 143

Standard C function: va_arg, va_list, va_start, and va_end

Syntax
 #include <stdarg.h>
 type va_arg(va_list argptr, type);
 void va_end(va_list argptr);
 void va_start(va_list argptr, last_parm);

The va_arg() macros are used to pass a variable number of arguments to a function.
1. First, you must have a call to va_start() passing a valid va_list and the mandatory first argument of the function. This

first argument can be anything; one way to use it is to have it be an integer describing the number of parameters being
passed.

2. Next, you call va_arg() passing the va_list and the type of the argument to be returned. The return value of va_arg() is
the current parameter.

3. Repeat calls to va_arg() for however many arguments you have.
4. Finally, a call to va_end() passing the va_list is necessary for proper cleanup.

For example:
 int sum(int num, ...)
 {
 int answer = 0;
 va_list argptr;

 va_start(argptr, num);

 for(; num > 0; num--)
 {
 answer += va_arg(argptr, int);
 }

 va_end(argptr);

 return(answer);
 }

 int main(void)
 {
 int answer = sum(4, 4, 3, 2, 1);
 printf("The answer is %d\n", answer);

 return(0);
 }

This code displays 10, which is 4+3+2+1.

C/C++ Language Reference

144 TR0173 (v4.0) April 6, 2009

Here is another example of variable argument function, which is a simple printing function:
 void my_printf(char *format, ...)
 {
 va_list argptr;

 va_start(argptr, format);

 while(*format != '\0')
 {
 // string
 if(*format == 's')
 {
 char* s = va_arg(argptr, char *);
 printf("Printing a string: %s\n", s);
 }
 // character
 else if(*format == 'c')
 {
 char c = (char) va_arg(argptr, int);
 printf("Printing a character: %c\n", c);
 break;
 }
 // integer
 else if(*format == 'd')
 {
 int d = va_arg(argptr, int);
 printf("Printing an integer: %d\n", d);
 }

 *format++;
 }
 va_end(argptr);
 }

 int main(void)
 {
 my_printf("sdc", "This is a string", 29, 'X');

 return(0);
 }

This code displays the following output when run:
 Printing a string: This is a string
 Printing an integer: 29
 Printing a character: X

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 145

C++
This section contains a description of the C++ specific containers, iterators, exceptions and library functions.

C++ Containers
The C++ Containers (vectors, lists, etc.) are generic vessels capable of holding many different types of data. For example, the
following statement creates a vector of integers:
 vector<int> v;

Containers can hold standard objects (like the int in the above example) as well as custom objects, as long as the objects in the
container meet a few requirements:

• The object must have a default constructor,

• an accessible destructor, and

• an accessible assignment operator.

When describing the functions associated with these various containers, this website defines the word TYPE to be the object
type that the container holds. For example, in the above statement, TYPE would be int. Similarily, when referring to containers
associated with pairs of data key_type and value_type are used to refer to the key and value types for that container.

C++ Iterators
Iterators are used to access members of the container classes, and can be used in a similar manner to pointers. For example,
one might use an iterator to step through the elements of a vector. There are several different types of iterators:

Iterator Description

input_iterator Read values with forward movement. These can be incremented, compared, and dereferenced.

output_iterator Write values with forward movement. These can be incremented and dereferenced.

forward_iterator
Read or write values with forward movement. These combine the functionality of input and output
iterators with the ability to store the iterators value.

bidirectional_iterator
Read and write values with forward and backward movement. These are like the forward iterators, but
you can increment and decrement them.

random_iterator
Read and write values with random access. These are the most powerful iterators, combining the
functionality of bidirectional iterators with the ability to do pointer arithmetic and pointer comparisons.

reverse_iterator Either a random iterator or a bidirectional iterator that moves in reverse direction.

Each of the container classes is associated with a type of iterator, and each of the STL algorithms uses a certain type of iterator.
For example, vectors are associated with random-access iterators, which means that they can use algorithms that require
random access. Since random-access iterators encompass all of the characteristics of the other iterators, vectors can use
algorithms designed for other iterators as well.

The following code creates and uses an iterator with a vector:
 vector<int> the_vector;

 vector<int>::iterator the_iterator;

 for(int i=0; i < 10; i++)

 the_vector.push_back(i);

 int total = 0;

 the_iterator = the_vector.begin();

C/C++ Language Reference

146 TR0173 (v4.0) April 6, 2009

 while(the_iterator != the_vector.end())

 {

 total += *the_iterator;

 the_iterator++;

 }

 cout << "Total=" << total << endl;

Notice that you can access the elements of the container by dereferencing the iterator.

C++ Exceptions
The <exception> header provides functions and classes for exception control. One basic class is exception:
 class exception

 {
 public:

 exception() throw();

 exception(const exception&) throw();

 exception& operator=(const exception&) throw();

 virtual ~exception() throw();

 virtual const char *what() const throw();

 };

The <stdexcept> header provides a small hierarchy of exception classes that can be thrown or caught:
• exception

• logic_error

o domain_error

o invalid_argument

o length_error

o out_of_range

• runtime_error

o range_error

o overflow_error

o underflow_error

Logic errors are thrown if the program has internal errors that are caused by the user of a function. And in theory preventable.

Run-time errors are thrown if the cause is beyond the program and can't be predicted by the user of a function.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 147

C++ I/O Functions
The <iostream> library automatically defines a few standard objects:

• cout, an object of the ostream class, which displays data to the standard output device.

• cerr, another object of the ostream class that writes unbuffered output to the standard error device.

• clog, like cerr, but uses buffered output.

• cin, an object of the istream class that reads data from the standard input device.

The <fstream> library allows programmers to do file input and output with the ifstream and ofstream classes.

C++ programmers can also do input and output from strings by using the String Stream class.

Some of the behavior of the C++ I/O streams (precision, justification, etc) may be modified by manipulating various io stream
format flags.

The next section contains some examples of what you can do with C++ I/O.

bad true if an error occurred

clear clear and set status flags

close close a stream

eof true if at the end-of-file

fail true if an error occurred

fill manipulate the default fill character

flags access or manipulate io stream format flags

flush empty the buffer

gcount number of characters read during last input

get read characters

getline read a line of characters

good true if no errors have occurred

ignore read and discard characters

open open a new stream

peek check the next input character

precision manipulate the precision of a stream

put write characters

putback return characters to a stream

rdstate returns the state flags of the stream

read read data into a buffer

seekg perform random access on an input stream

seekp perform random access on output streams

setf set format flags

sync_with_stdio synchronize with standard I/O

tellg read input stream pointers

tellp read output stream pointers

unsetf clear io stream format flags

C/C++ Language Reference

148 TR0173 (v4.0) April 6, 2009

width access and manipulate the minimum field width

write write characters

C++ I/O Examples

Reading From Files
Assume that we have a file named data.txt that contains this text:
 Fry: One Jillion dollars.
 [Everyone gasps.]
 Auctioneer: Sir, that's not a number.
 [Everyone gasps.]

We could use this code to read data from the file, word by word:
 ifstream fin("data.txt");
 string s;
 while(fin >> s)
 {
 cout << "Read from file: " << s << endl;
 }

When used in this manner, we'll get space-delimited bits of text from the file:
 Read from file: Fry:
 Read from file: One
 Read from file: Jillion
 Read from file: dollars.
 Read from file: [Everyone
 Read from file: gasps.]
 Read from file: Auctioneer:
 Read from file: Sir,
 Read from file: that's
 Read from file: not
 Read from file: a
 Read from file: number.
 Read from file: [Everyone
 Read from file: gasps.]

Note that in the previous example, all of the whitespace that separated words (including newlines) was lost. If we were
interested in preserving whitespace, we could read the file in line-by-line using the I/O getline() function.
 ifstream fin("data.txt");
 const int LINE_LENGTH = 100;
 char str[LINE_LENGTH];

 while(fin.getline(str,LINE_LENGTH))
 {
 cout << "Read from file: " << str << endl;
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 149

Reading line-by-line produces the following output:
 Read from file: Fry: One Jillion dollars.
 Read from file: [Everyone gasps.]
 Read from file: Auctioneer: Sir, that's not a number.
 Read from file: [Everyone gasps.]

If you want to avoid reading into character arrays, you can use the C++ string getline() function to read lines into strings:
 ifstream fin("data.txt");
 string s;
 while(getline(fin,s))
 {
 cout << "Read from file: " << s << endl;
 }

Checking For Errors
Simply evaluating an I/O object in a boolean context will return false if any errors have occurred:
 string filename = "data.txt";
 ifstream fin(filename.c_str());
 if(!fin)
 {
 cout << "Error opening " << filename << " for input" << endl;
 exit(-1);
 }

I/O Constructors

Syntax
 #include <fstream>
 fstream(const char *filename, openmode mode);
 ifstream(const char *filename, openmode mode);
 ofstream(const char *filename, openmode mode);

The fstream, ifstream, and ofstream objects are used to do file I/O. The optional mode defines how the file is to be opened,
according to the io stream mode flags. The optional filename specifies the file to be opened and associated with the stream.

Input and output file streams can be used in a similar manner to C++ predefined I/O streams, cin and cout.

Example
The following code reads input data and appends the result to an output file.
 ifstream fin("/tmp/data.txt");

 ofstream fout("/tmp/results.txt", ios::app);
 while(fin >> temp)

 fout << temp + 2 << endl;

 fin.close();

 fout.close();

C/C++ Language Reference

150 TR0173 (v4.0) April 6, 2009

C++ I/O Flags

Format flags
C++ defines some format flags for standard input and output, which can be manipulated with the flags(), setf(), and unsetf()
functions. For example,
 cout.setf(ios::left);

turns on left justification for all output directed to cout.

Flag Meaning

boolalpha Boolean values can be input/output using the words "true" and "false".

dec Numeric values are displayed in decimal.

fixed Display floating point values using normal notation (as opposed to scientific).

hex Numeric values are displayed in hexidecimal.

internal If a numeric value is padded to fill a field, spaces are inserted between the sign and base character.

left Output is left justified.

oct Numeric values are displayed in octal.

right Output is right justified.

scientific Display floating point values using scientific notation.

showbase Display the base of all numeric values.

showpoint Display a decimal and extra zeros, even when not needed.

showpos Display a leading plus sign before positive numeric values.

skipws Discard whitespace characters (spaces, tabs, newlines) when reading from a stream.

unitbuf Flush the buffer after each insertion.

uppercase Display the "e" of scientific notation and the "x" of hexidecimal notation as capital letters.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 151

Manipulators
You can also manipulate flags indirectly, using the following manipulators. Most programmers are familiar with the endl
manipulator, which might give you an idea of how manipulators are used. For example, to set the dec flag, you might use the
following command:
 cout << dec;

Manipulators defined in <iostream>

Manipulator Description Input Output

boolalpha Turns on the boolalpha flag X X

dec Turns on the dec flag X X

endl Output a newline character, flush the stream X

ends Output a null character X

fixed Turns on the fixed flag X

flush Flushes the stream X

hex Turns on the hex flag X X

internal Turns on the internal flag X

left Turns on the left flag X

noboolalpha Turns off the boolalpha flag X X

noshowbase Turns off the showbase flag X

noshowpoint Turns off the showpoint flag X

noshowpos Turns off the showpos flag X

noskipws Turns off the skipws flag X

nounitbuf Turns off the unitbuf flag X

nouppercase Turns off the uppercase flag X

oct Turns on the oct flag X X

right Turns on the right flag X

scientific Turns on the scientific flag X

showbase Turns on the showbase flag X

showpoint Turns on the showpoint flag X

showpos Turns on the showpos flag X

skipws Turns on the skipws flag X

unitbuf Turns on the unitbuf flag X

uppercase Turns on the uppercase flag X

ws Skip any leading whitespace X

C/C++ Language Reference

152 TR0173 (v4.0) April 6, 2009

Manipulators defined in <iomanip>

Manipulator Description Input Output

resetiosflags(long f) Turn off the flags specified by f X X

setbase(int base) Sets the number base to base X

setfill(int ch) Sets the fill character to ch X

setiosflags(long f) Turn on the flags specified by f X X

setprecision(int p) Sets the number of digits of precision X

setw(int w) Sets the field width to w X

State flags
The I/O stream state flags tell you the current state of an I/O stream. The flags are:

Flag Meaning

badbit a fatal error has occurred

eofbit EOF has been found

failbit a nonfatal error has occurred

goodbit no errors have occurred

Mode flags
The I/O stream mode flags allow you to access files in different ways. The flags are:

Mode Meaning

ios::app append output

ios::ate seek to EOF when opened

ios::binary open the file in binary mode

ios::in open the file for reading

ios::out open the file for writing

ios::trunc overwrite the existing file

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 153

C++ I/O function: bad

Syntax
 #include <fstream>
 bool bad();

The bad() function returns true if a fatal error with the current stream has occurred, false otherwise.

C++ I/O function: clear

Syntax
 #include <fstream>
 void clear(iostate flags = ios::goodbit);

The function clear() does two things:

• it clears all io stream state flags associated with the current stream,
• and sets the flags denoted by flags

The flags argument defaults to ios::goodbit, which means that by default, all flags will be cleared and ios::goodbit will be set.

Example
For example, the following code uses the clear() function to reset the flags of an output file stream, after an attempt is made to
read from that output stream:
 fstream outputFile("output.txt", fstream::out);

 // try to read from the output stream; this shouldn't work
 int val;
 outputFile >> val;
 if(outputFile.fail())
 {
 cout << "Error reading from the output stream" << endl;
 // reset the flags associated with the stream
 outputFile.clear();
 }

 for(int i = 0; i < 10; i++)
 {
 outputFile << i << " ";
 }
 outputFile << endl;

C++ I/O function: close

Syntax
 #include <fstream>
 void close();

The close() function closes the associated file stream.

C/C++ Language Reference

154 TR0173 (v4.0) April 6, 2009

C++ I/O function: eof

Syntax
 #include <fstream>
 bool eof();

The function eof() returns true if the end of the associated input file has been reached, false otherwise.
For example, the following code reads data from an input stream in and writes it to an output stream out, using eof() at the end
to check if an error occurred:
 char buf[BUFSIZE];
 do
 {
 in.read(buf, BUFSIZE);
 std::streamsize n = in.gcount();
 out.write(buf, n);
 } while(in.good());
 if(in.bad() || !in.eof())
 {
 // fatal error occurred
 }
 in.close();

C++ I/O function: fail

Syntax
 #include <fstream>
 bool fail();

The fail() function returns true if an error has occurred with the current stream, false otherwise.

C++ I/O function: fill

Syntax
 #include <fstream>
 char fill();
 char fill(char ch);

The function fill() either returns the current fill character, or sets the current fill character to ch.

The fill character is defined as the character that is used for padding when a number is smaller than the specified width(). The
default fill character is the space character.

C++ I/O function: flags

Syntax
 #include <fstream>
 fmtflags flags();
 fmtflags flags(fmtflags f);

The flags() function either returns the io stream format flags for the current stream, or sets the flags for the current stream to be
f.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 155

C++ I/O function: flush

Syntax
 #include <fstream>
 ostream& flush();

The flush() function causes the buffer for the current output stream to be actually written out to the attached device.

This function is useful for printing out debugging information, because sometimes programs abort before they have a chance to
write their output buffers to the screen. Judicious use of flush() can ensure that all of your debugging statements actually get
printed.

C++ I/O function: gcount

Syntax
 #include <fstream>
 streamsize gcount();

The function gcount() is used with input streams, and returns the number of characters read by the last input operation.

C++ I/O function: get

Syntax
 #include <fstream>
 int get();
 istream& get(char& ch);
 istream& get(char* buffer, streamsize num);
 istream& get(char* buffer, streamsize num, char delim);
 istream& get(streambuf& buffer);
 istream& get(streambuf& buffer, char delim);

The get() function is used with input streams, and either:

• reads a character and returns that value,
• reads a character and stores it as ch,

• reads characters into buffer until num - 1 characters have been read, or EOF or newline encountered,

• reads characters into buffer until num - 1 characters have been read, or EOF or the delim character encountered (delim
is not read until next time),

• reads characters into buffer until a newline or EOF is encountered,
• or reads characters into buffer until a newline, EOF, or delim character is encountered (again, delim isn't read until the

next get()).

For example, the following code displays the contents of a file called temp.txt, character by character:
 char ch;
 ifstream fin("temp.txt");
 while(fin.get(ch))
 cout << ch;
 fin.close();

C/C++ Language Reference

156 TR0173 (v4.0) April 6, 2009

C++ I/O function: getline

Syntax
 #include <fstream>
 istream& getline(char* buffer, streamsize num);
 istream& getline(char* buffer, streamsize num, char delim);

The getline() function is used with input streams, and reads characters into buffer until either:

• num - 1 characters have been read,

• a newline is encountered,
• an EOF is encountered,
• or, optionally, until the character delim is read. The delim character is not put into buffer.

For example, the following code uses the getline function to display the first 100 characters from each line of a text file:
 ifstream fin("tmp.dat");

 int MAX_LENGTH = 100;
 char line[MAX_LENGTH];

 while(fin.getline(line, MAX_LENGTH))
 {
 cout << "read line: " << line << endl;
 }

If you'd like to read lines from a file into strings instead of character arrays, consider using the string getline function.

C++ I/O function: good

Syntax
 #include <fstream>
 bool good();

The function good() returns true if no errors have occurred with the current stream, false otherwise.

C++ I/O function: ignore

Syntax
 #include <fstream>
 istream& ignore(streamsize num=1, int delim=EOF);

The ignore() function is used with input streams. It reads and throws away characters until num characters have been read
(where num defaults to 1) or until the character delim is read (where delim defaults to EOF).

The ignore() function can sometimes be useful when using the getline() function together with the >> operator. For example, if
you read some input that is followed by a newline using the >> operator, the newline will remain in the input as the next thing to
be read. Since getline() will by default stop reading input when it reaches a newline, a subsequent call to getline() will return an
empty string. In this case, the ignore() function could be called before getline() to "throw away" the newline.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 157

C++ I/O function: open

Syntax
 #include <fstream>
 void open(const char *filename);
 void open(const char *filename, openmode mode = default_mode);

The function open() is used with file streams. It opens filename and associates it with the current stream. The optional io
stream mode flag mode defaults to ios::in for ifstream, ios::out for ofstream, and ios::in|ios::out for fstream.

If open() fails, the resulting stream will evaluate to false when used in a Boolean expression. For example:
 ifstream inputStream;
 inputStream.open("file.txt");
 if(!inputStream)
 {
 cerr << "Error opening input stream" << endl;
 return;
 }

C++ I/O function: peek

Syntax
 #include <fstream>
 int peek();

The function peek() is used with input streams, and returns the next character in the stream or EOF if the end of file is read.
peek() does not remove the character from the stream.

C++ I/O function: precision

Syntax
 #include <fstream>
 streamsize precision();
 streamsize precision(streamsize p);

The precision() function either sets or returns the current number of digits that is displayed for floating-point variables.

For example, the following code sets the precision of the cout stream to 5:
 float num = 314.15926535;
 cout.precision(5);
 cout << num;

This code displays the following output:
 314.16

C/C++ Language Reference

158 TR0173 (v4.0) April 6, 2009

C++ I/O function: put

Syntax
 #include <fstream>
 ostream& put(char ch);

The function put() is used with output streams, and writes the character ch to the stream.

C++ I/O function: putback

Syntax
 #include <fstream>
 istream& putback(char ch);

The putback() function is used with input streams, and returns the previously-read character ch to the input stream.

C++ I/O function: rdstate

Syntax
 #include <fstream>
 iostate rdstate();

The rdstate() function returns the io stream state flags of the current stream.

C++ I/O function: read

Syntax
 #include <fstream>
 istream& read(char* buffer, streamsize num);

The function read() is used with input streams, and reads num bytes from the stream before placing them in buffer. If EOF is
encountered, read() stops, leaving however many bytes it put into buffer as they are.

For example:
 struct
 {
 int height;
 int width;
 } rectangle;

 input_file.read((char *)(&rectangle), sizeof(rectangle));
 if(input_file.bad())
 {
 cerr << "Error reading data" << endl;
 exit(0);
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 159

C++ I/O function: seekg

Syntax
 #include <fstream>
 istream& seekg(off_type offset, ios::seekdir origin);
 istream& seekg(pos_type position);

The function seekg() is used with input streams, and it repositions the "get" pointer for the current stream to offset bytes away
from origin, or places the "get" pointer at position.

C++ I/O function: seekp

Syntax
 #include <fstream>
 ostream& seekp(off_type offset, ios::seekdir origin);
 ostream& seekp(pos_type position);

The seekp() function is used with output streams, but is otherwise very similar to seekg().

C++ I/O function: setf

Syntax
 #include <fstream>
 fmtflags setf(fmtflags flags);
 fmtflags setf(fmtflags flags, fmtflags needed);

The function setf() sets the io stream format flags of the current stream to flags. The optional needed argument specifies that
only the flags that are in both flags and needed should be set. The return value is the previous configuration of io stream
format flags.

For example:
 int number = 0x3FF;
 cout.setf(ios::dec);
 cout << "Decimal: " << number << endl;
 cout.unsetf(ios::dec);
 cout.setf(ios::hex);
 cout << "Hexadecimal: " << number << endl;

Note that the preceding code is functionally identical to:
 int number = 0x3FF;
 cout << "Decimal: " << number << endl << hex << "Hexadecimal: " << number << dec << endl;

thanks to io stream manipulators.

C++ I/O function: sync_with_stdio

Syntax
 #include <fstream>
 static bool sync_with_stdio(bool sync=true);

The sync_with_stdio() function allows you to turn on and off the ability for the C++ I/O system to work with the C I/O system.

C/C++ Language Reference

160 TR0173 (v4.0) April 6, 2009

C++ I/O function: tellg

Syntax
 #include <fstream>
 pos_type tellg();

The tellg() function is used with input streams, and returns the current "get" position of the pointer in the stream.

C++ I/O function: tellp

Syntax
 #include <fstream>
 pos_type tellp();

The tellp() function is used with output streams, and returns the current "put" position of the pointer in the stream.

For example, the following code displays the file pointer as it writes to a stream:
 string s("In Xanadu did Kubla Khan...");
 ofstream fout("output.txt");
 for(int i=0; i < s.length(); i++)
 {
 cout << "File pointer: " << fout.tellp();
 fout.put(s[i]);
 cout << " " << s[i] << endl;
 }
 fout.close();

C++ I/O function: unsetf

Syntax
 #include <fstream>
 void unsetf(fmtflags flags);

The function unsetf() uses flags to clear the io stream format flags associated with the current stream.

C++ I/O function: width

Syntax
 #include <fstream>
 int width();
 int width(int w);

The function width() returns the current width, which is defined as the minimum number of characters to display with each
output. The optional argument w can be used to set the width.

For example:
 cout.width(5);
 cout << "2";

displays
 2

(that's four spaces followed by a '2')

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 161

C++ I/O function: write

Syntax
 #include <fstream>
 ostream& write(const char* buffer, streamsize num);

The write() function is used with output streams, and writes num bytes from buffer to the current output stream.

C/C++ Language Reference

162 TR0173 (v4.0) April 6, 2009

C++ String Functions

append append characters and strings onto a string

assign give a string values from strings of characters and other C++ strings

at returns the character at a specific location

begin returns an iterator to the beginning of the string

c_str returns a non-modifiable standard C character array version of the string

capacity returns the number of characters that the string can hold

clear removes all characters from the string

compare compares two strings

copy copies characters from a string into an array

data returns a pointer to the first character of a string

empty true if the string has no characters

end returns an iterator just past the last character of a string

erase removes characters from a string

find find characters in the string

find_first_not_of find first absence of characters

find_first_of find first occurrence of characters

find_last_not_of find last absence of characters

find_last_of find last occurrence of characters

getline read data from an I/O stream into a string

insert insert characters into a string

length returns the length of the string

max_size returns the maximum number of characters that the string can hold

push_back add a character to the end of the string

rbegin returns a reverse_iterator to the end of the string

rend returns a reverse_iterator to the beginning of the string

replace replace characters in the string

reserve sets the minimum capacity of the string

resize change the size of the string

rfind find the last occurrence of a substring

size returns the number of items in the string

substr returns a certain substring

swap swap the contents of this string with another

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 163

String constructors

Syntax
 #include <string>
 string();
 string(const string& s);
 string(size_type length, const char& ch);
 string(const char* str);
 string(const char* str, size_type length);
 string(const string& str, size_type index, size_type length);
 string(input_iterator start, input_iterator end);
 ~string();

The string constructors create a new string containing:

• nothing; an empty string,
• a copy of the given string s,

• length copies of ch,

• a duplicate of str (optionally up to length characters long),

• a substring of str starting at index and length characters long

• a string of characterss denoted by the start and end iterators

For example,
 string str1(5, 'c');
 string str2("Now is the time...");
 string str3(str2, 11, 4);
 cout << str1 << endl;
 cout << str2 << endl;
 cout << str3 << endl;

displays
 ccccc
 Now is the time...
 time

The string constructors usually run in linear time, except the empty constructor, which runs in constant time.

C/C++ Language Reference

164 TR0173 (v4.0) April 6, 2009

String operators

Syntax
 #include <string>
 bool operator==(const string& c1, const string& c2);
 bool operator!=(const string& c1, const string& c2);
 bool operator<(const string& c1, const string& c2);
 bool operator>(const string& c1, const string& c2);
 bool operator<=(const string& c1, const string& c2);
 bool operator>=(const string& c1, const string& c2);
 string operator+(const string& s1, const string& s2);
 string operator+(const char* s, const string& s2);
 string operator+(char c, const string& s2);
 string operator+(const string& s1, const char* s);
 string operator+(const string& s1, char c);
 ostream& operator<<(ostream& os, const string& s);
 istream& operator>>(istream& is, string& s);
 string& operator=(const string& s);
 string& operator=(const char* s);
 string& operator=(char ch);
 char& operator[](size_type index);

C++ strings can be compared and assigned with the standard comparison operators: ==, !=, <=, >=, <, >, and =. Performing a
comparison or assigning one string to another takes linear time.

Two strings are equal if:
1. Their size is the same, and

2. Each member in location i in one string is equal to the the member in location i in the other string.

Comparisons among strings are done lexicographically.

In addition to the normal container operators, strings can also be concatenated with the + operator and fed to the C++ I/O
stream classes with the << and >> operators.

For example, the following code concatenates two strings and displays the result:
 string s1 = "Now is the time...";
 string s2 = "for all good men...";
 string s3 = s1 + s2;
 cout << "s3 is " << s3 << endl;

Futhermore, strings can be assigned values that are other strings, character arrays, or even single characters. The following
code is perfectly valid:
 char ch = 'N';
 string s;
 s = ch;

Individual characters of a string can be examined with the [] operator, which runs in constant time.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 165

C++ String function: append

Syntax
 #include <string>
 string& append(const string& str);
 string& append(const char* str);
 string& append(const string& str, size_type index, size_type len);
 string& append(const char* str, size_type num);
 string& append(size_type num, char ch);
 string& append(input_iterator start, input_iterator end);

The append() function either:
• appends str on to the end of the current string,

• appends a substring of str starting at index that is len characters long on to the end of the current string,

• appends num characters of str on to the end of the current string,

• appends num repititions of ch on to the end of the current string,

• or appends the sequence denoted by start and end on to the end of the current string.

For example, the following code uses append() to add 10 copies of the '!' character to a string:
 string str = "Hello World";
 str.append(10, '!');
 cout << str << endl;

That code displays:
 Hello World!!!!!!!!!!

In the next example, append() is used to concatenate a substring of one string onto another string:
 string str1 = "Eventually I stopped caring...";
 string str2 = "but that was the '80s so nobody noticed.";

 str1.append(str2, 25, 15);
 cout << "str1 is " << str1 << endl;

When run, the above code displays:
 str1 is Eventually I stopped caring...nobody noticed.

C/C++ Language Reference

166 TR0173 (v4.0) April 6, 2009

C++ String function: assign

Syntax
 #include <string>
 void assign(size_type num, const char& val);
 void assign(input_iterator start, input_iterator end);
 string& assign(const string& str);
 string& assign(const char* str);
 string& assign(const char* str, size_type num);
 string& assign(const string& str, size_type index, size_type len);
 string& assign(size_type num, const char& ch);

The default assign() function gives the current string the values from start to end, or gives it num copies of val.

In addition to the normal assign functionality that all C++ containers have, strings possess an assign() function that also allows
them to:
• assign str to the current string,

• assign the first num characters of str to the current string,

• assign a substring of str starting at index that is len characters long to the current string,

For example, the following code:
 string str1, str2 = "War and Peace";
 str1.assign(str2, 4, 3);
 cout << str1 << endl;

displays
 and

This function will destroy the previous contents of the string.

C++ String function: at

Syntax
 #include <string>
 TYPE& at(size_type loc);
 const TYPE& at(size_type loc) const;

The at() function returns a reference to the element in the string at index loc. The at() function is safer than the [] operator,
because it won't let you reference items outside the bounds of the string.

For example, consider the following code:
 vector<int> v(5, 1);
 for(int i = 0; i < 10; i++)
 {
 cout << "Element " << i << " is " << v[i] << endl;
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 167

This code overrunns the end of the vector, producing potentially dangerous results. The following code would be much safer:
 vector<int> v(5, 1);
 for(int i = 0; i < 10; i++)
 {
 cout << "Element " << i << " is " << v.at(i) << endl;
 }

Instead of attempting to read garbage values from memory, the at() function will realize that it is about to overrun the vector and
will throw an exception.

C++ String function: begin

Syntax
 #include <string>
 iterator begin();
 const_iterator begin() const;

The function begin() returns an iterator to the first element of the string. begin() should run in constant time.

For example, the following code uses begin() to initialize an iterator that is used to traverse a list:
 // Create a list of characters
 list<char> charList;
 for(int i=0; i < 10; i++)
 {
 charList.push_front(i + 65);
 }
 // Display the list
 list<char>::iterator theIterator;
 for(theIterator = charList.begin(); theIterator != charList.end(); theIterator++)
 {
 cout << *theIterator;
 }

C++ String function: c_str

Syntax
 #include <string>
 const char* c_str();

The function c_str() returns a const pointer to a regular C string, identical to the current string. The returned string is null-
terminated.
Note that since the returned pointer is of type const, the character data that c_str() returns cannot be modified. Furthermore,
you do not need to call free() or delete on this pointer.

C/C++ Language Reference

168 TR0173 (v4.0) April 6, 2009

C++ String function: capacity

Syntax
 #include <string>
 size_type capacity() const;

The capacity() function returns the number of elements that the string can hold before it will need to allocate more space.

For example, the following code uses two different methods to set the capacity of two vectors. One method passes an argument
to the constructor that suggests an initial size, the other method calls the reserve function to achieve a similar goal:
 vector<int> v1(10);
 cout << "The capacity of v1 is " << v1.capacity() << endl;
 vector<int> v2;
 v2.reserve(20);
 cout << "The capacity of v2 is " << v2.capacity() << endl;

When run, the above code produces the following output:
 The capacity of v1 is 10
 The capacity of v2 is 20

C++ containers are designed to grow in size dynamically. This frees the programmer from having to worry about storing an
arbitrary number of elements in a container. However, sometimes the programmer can improve the performance of her program
by giving hints to the compiler about the size of the containers that the program will use. These hints come in the form of the
reserve() function and the constructor used in the above example, which tell the compiler how large the container is expected to
get.

The capacity() function runs in constant time.

C++ String function: clear

Syntax
 #include <string>
 void clear();

The function clear() deletes all of the elements in the string. clear() runs in linear time.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 169

C++ String function: compare

Syntax
 #include <string>
 int compare(const string& str);
 int compare(const char* str);
 int compare(size_type index, size_type length, const string& str);
 int compare(size_type index, size_type length, const string& str, size_type index2,
 size_type length2);
 int compare(size_type index, size_type length, const char* str, size_type length2);

The compare() function either compares str to the current string in a variety of ways, returning

Return Value Case

less than zero this < str

zero this == str

greater than zero this > str

The various functions either:
• compare str to the current string,

• compare str to a substring of the current string, starting at index for length characters,

• compare a substring of str to a substring of the current string, where index2 and length2 refer to str and index and
length refer to the current string,

• or compare a substring of str to a substring of the current string, where the substring of str begins at zero and is length2
characters long, and the substring of the current string begins at index and is length characters long.

For example, the following code uses compare() to compare four strings with eachother:
 string names[] = {"Homer", "Marge", "3-eyed fish", "inanimate carbon rod"};

 for(int i = 0; i < 4; i++)
 {
 for(int j = 0; j < 4; j++)
 {
 cout << names[i].compare(names[j]) << " ";
 }
 cout << endl;
 }

Data from the above code was used to generate this table, which shows how the various strings compare to eachother:

 Homer Marge 3-eyed fish inanimate carbon rod

"Homer".compare(x) 0 -1 1 -1

"Marge".compare(x) 1 0 1 -1

"3-eyed fish".compare(x) -1 -1 0 -1

"inanimate carbon rod".compare(x) 1 1 1 0

C/C++ Language Reference

170 TR0173 (v4.0) April 6, 2009

C++ String function: copy

Syntax
 #include <string>
 size_type copy(char* str, size_type num, size_type index = 0);

The copy() function copies num characters of the current string (starting at index if it's specified, 0 otherwise) into str.

The return value of copy() is the number of characters copied.

For example, the following code uses copy() to extract a substring of a string into an array of characters:
 char buf[30];
 memset(buf, '\0', 30);
 string str = "Trying is the first step towards failure.";
 str.copy(buf, 24);
 cout << buf << endl;

When run, this code displays:
 Trying is the first step

Note that before calling copy(), we first call (Standard C String and Character) memset() to fill the destination array with copies
of the NULL character. This step is included to make sure that the resulting array of characters is NULL-terminated.

C++ String function: data

Syntax
 #include <string>
 const char *data();

The function data() returns a pointer to the first character in the current string.

C++ String function: empty

Syntax
 #include <string>
 bool empty() const;

The empty() function returns true if the string has no elements, false otherwise.

For example:
 string s1;
 string s2("");
 string s3("This is a string");
 cout.setf(ios::boolalpha);
 cout << s1.empty() << endl;
 cout << s2.empty() << endl;
 cout << s3.empty() << endl;

When run, this code produces the following output:
 true
 true
 false

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 171

C++ String function: end

Syntax
 #include <string>
 iterator end();

 const_iterator end() const;

The end() function returns an iterator just past the end of the string.

Note that before you can access the last element of the string using an iterator that you get from a call to end(), you'll have to
decrement the iterator first.

For example, the following code uses begin() and end() to iterate through all of the members of a vector:
 vector<int> v1(5, 789);
 vector<int>::iterator it;
 for(it = v1.begin(); it != v1.end(); it++)
 {
 cout << *it << endl;
 }

The iterator is initialized with a call to begin(). After the body of the loop has been executed, the iterator is incremented and
tested to see if it is equal to the result of calling end(). Since end() returns an iterator pointing to an element just after the last
element of the vector, the loop will only stop once all of the elements of the vector have been displayed.

end() runs in constant time.

C++ String function: erase

Syntax
 #include <string>
 iterator erase(iterator loc);
 iterator erase(iterator start, iterator end);
 string& erase(size_type index = 0, size_type num = npos);

The erase() function either:
• removes the character pointed to by loc, returning an iterator to the next character,

• removes the characters between start and end (including the one at start but not the one at end), returning an iterator
to the character after the last character removed,

• or removes num characters from the current string, starting at index, and returns *this.

The parameters index and num have default values, which means that erase() can be called with just index to erase all
characters after index or with no arguments to erase all characters.

For example:
 string s("So, you like donuts, eh? Well, have all the donuts in the world!");
 cout << "The original string is '" << s << "'" << endl;

 s.erase(50, 14);
 cout << "Now the string is '" << s << "'" << endl;
 s.erase(24);
 cout << "Now the string is '" << s << "'" << endl;
 s.erase();
 cout << "Now the string is '" << s << "'" << endl;

C/C++ Language Reference

172 TR0173 (v4.0) April 6, 2009

will display
 The original string is 'So, you like donuts, eh? Well, have all the donuts in the world!'
 Now the string is 'So, you like donuts, eh? Well, have all the donuts'
 Now the string is 'So, you like donuts, eh?'
 Now the string is ''

erase() runs in linear time.

C++ String function: find

Syntax
 #include <string>
 size_type find(const string& str, size_type index);
 size_type find(const char* str, size_type index);
 size_type find(const char* str, size_type index, size_type length);
 size_type find(char ch, size_type index);

The function find() either:
• returns the first occurrence of str within the current string, starting at index, string::npos if nothing is found,

• if the length parameter is given, then find() returns the first occurrence of the first length characters of str within the
current string, starting at index, string::npos if nothing is found,

• or returns the index of the first occurrence ch within the current string, starting at index, string::npos if nothing is found.

For example:
 string str1("Alpha Beta Gamma Delta");
 string::size_type loc = str1.find("Omega", 0);
 if(loc != string::npos)
 {
 cout << "Found Omega at " << loc << endl;
 }
 else
 {
 cout << "Didn't find Omega" << endl;
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 173

C++ String function: find_first_not_of

Syntax
 #include <string>
 size_type find_first_not_of(const string& str, size_type index = 0);
 size_type find_first_not_of(const char* str, size_type index = 0);
 size_type find_first_not_of(const char* str, size_type index, size_type num);
 size_type find_first_not_of(char ch, size_type index = 0);

The find_first_not_of() function either:
• returns the index of the first character within the current string that does not match any character in str, beginning the

search at index, string::npos if nothing is found,

• searches the current string, beginning at index, for any character that does not match the first num characters in str,
returning the index in the current string of the first character found that meets this criteria, otherwise returning string::npos,

• or returns the index of the first occurrence of a character that does not match ch in the current string, starting the search at
index, string::npos if nothing is found.

For example, the following code searches a string of text for the first character that is not a lower-case character, space,
comma, or hypen:
 string lower_case = "abcdefghijklmnopqrstuvwxyz ,-";
 string str = "this is the lower-case part, AND THIS IS THE UPPER-CASE PART";
 cout << "first non-lower-case letter in str at: " << str.find_first_not_of(lower_case) << endl;

When run, find_first_not_of() finds the first upper-case letter in str at index 29 and displays this output:
 first non-lower-case letter in str at: 29

C++ String function: find_first_of

Syntax
 #include <string>
 size_type find_first_of(const string &str, size_type index = 0);
 size_type find_first_of(const char* str, size_type index = 0);
 size_type find_first_of(const char* str, size_type index, size_type num);
 size_type find_first_of(char ch, size_type index = 0);

The find_first_of() function either:
• returns the index of the first character within the current string that matches any character in str, beginning the search at

index, string::npos if nothing is found,

• searches the current string, beginning at index, for any of the first num characters in str, returning the index in the current
string of the first character found, or string::npos if no characters match,

• or returns the index of the first occurrence of ch in the current string, starting the search at index, string::npos if nothing is
found.

C/C++ Language Reference

174 TR0173 (v4.0) April 6, 2009

C++ String function: find_last_not_of

Syntax
 #include <string>
 size_type find_last_not_of(const string& str, size_type index = npos);
 size_type find_last_not_of(const char* str, size_type index = npos);
 size_type find_last_not_of(const char* str, size_type index, size_type num);
 size_type find_last_not_of(char ch, size_type index = npos);

The find_last_not_of() function either:
• returns the index of the last character within the current string that does not match any character in str, doing a reverse

search from index, string::npos if nothing is found,

• does a reverse search in the current string, beginning at index, for any character that does not match the first num
characters in str, returning the index in the current string of the first character found that meets this criteria, otherwise
returning string::npos,

• or returns the index of the last occurrence of a character that does not match ch in the current string, doing a reverse search
from index, string::npos if nothing is found.

For example, the following code searches for the last non-lower-case character in a mixed string of characters:
 string lower_case = "abcdefghijklmnopqrstuvwxyz";
 string str = "abcdefgABCDEFGhijklmnop";
 cout << "last non-lower-case letter in str at: " << str.find_last_not_of(lower_case) << endl;

This code displays the following output:
 last non-lower-case letter in str at: 13

C++ String function: find_last_of

Syntax
 #include <string>
 size_type find_last_of(const string& str, size_type index = npos);
 size_type find_last_of(const char* str, size_type index = npos);
 size_type find_last_of(const char* str, size_type index, size_type num);
 size_type find_last_of(char ch, size_type index = npos);

The find_last_of() function either:
• does a reverse search from index, returning the index of the first character within the current string that matches any

character in str, or string::npos if nothing is found,

• does a reverse search in the current string, beginning at index, for any of the first num characters in str, returning the
index in the current string of the first character found, or string::npos if no characters match,

• or does a reverse search from index, returning the index of the first occurrence of ch in the current string, string::npos if
nothing is found.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 175

C++ String function: getline

Syntax
 #include <string>
 istream& getline(istream& is, string& s, char delimiter = '\n');

The C++ string class defines the global function getline() to read strings from an I/O stream. The getline() function, which is not
part of the string class, reads a line from is and stores it into s. If a character delimiter is specified, then getline() will use
delimiter to decide when to stop reading data.

For example, the following code reads a line of text from stdin and displays it to stdout:
 string s;

 getline(cin, s);

 cout << "You entered " << s << endl;

After getting a line of data in a string, you may find that string streams are useful in extracting data from that string. For example,
the following code reads numbers from standard input, ignoring any "commented" lines that begin with double slashes:
 // expects either space-delimited numbers or lines that start with
 // two forward slashes (//)
 string s;
 while(getline(cin,s))
 {
 if(s.size() >= 2 && s[0] == '/' && s[1] == '/')
 {
 cout << " ignoring comment: " << s << endl;
 }
 else
 {
 istringstream ss(s);
 double d;
 while(ss >> d)
 {
 cout << " got a number: " << d << endl;
 }
 }
 }

When run with a user supplying input, the above code might produce this output:
 // test
 ignoring comment: // test
 23.3 -1 3.14159
 got a number: 23.3
 got a number: -1
 got a number: 3.14159
 // next batch
 ignoring comment: // next batch
 1 2 3 4 5
 got a number: 1
 got a number: 2
 got a number: 3
 got a number: 4
 got a number: 5
 50
 got a number: 50

C/C++ Language Reference

176 TR0173 (v4.0) April 6, 2009

C++ String function: insert

Syntax
 #include <string>
 iterator insert(iterator i, const char& ch);
 string& insert(size_type index, const string& str);
 string& insert(size_type index, const char* str);
 string& insert(size_type index1, const string& str, size_type index2, size_type num);
 string& insert(size_type index, const char* str, size_type num);
 string& insert(size_type index, size_type num, char ch);
 void insert(iterator i, size_type num, const char& ch);
 void insert(iterator i, iterator start, iterator end);

The very multi-purpose insert() function either:
• inserts ch before the character denoted by i,

• inserts str into the current string, at location index,

• inserts a substring of str (starting at index2 and num characters long) into the current string, at location index1,

• inserts num characters of str into the current string, at location index,

• inserts num copies of ch into the current string, at location index,

• inserts num copies of ch into the current string, before the character denoted by i,

• or inserts the characters denoted by start and end into the current string, before the character specified by i.

C++ String function: length

Syntax
 #include <string>
 size_type length() const;

The length() function returns the number of elements in the current string, performing the same role as the size() function.

C++ String function: max_size

Syntax
 #include <string>
 size_type max_size() const;

The max_size() function returns the maximum number of elements that the string can hold. The max_size() function should not
be confused with the size() or capacity() functions, which return the number of elements currently in the string and the the
number of elements that the string will be able to hold before more memory will have to be allocated, respectively.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 177

C++ String function: push_back

Syntax
 #include <string>
 void push_back(const TYPE& val);

The push_back() function appends val to the end of the string.

For example, the following code puts 10 integers into a list:
 list<int> the_list;
 for(int i = 0; i < 10; i++)
 the_list.push_back(i);

When displayed, the resulting list would look like this:
 0 1 2 3 4 5 6 7 8 9

push_back() runs in constant time.

C++ String function: rbegin

Syntax
 #include <string>
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;

The rbegin() function returns a reverse_iterator to the end of the current string.

rbegin() runs in constant time.

C++ String function: rend

Syntax
 #include <string>

 reverse_iterator rend();
 const_reverse_iterator rend() const;

The function rend() returns a reverse_iterator to the beginning of the current string.

rend() runs in constant time.

C/C++ Language Reference

178 TR0173 (v4.0) April 6, 2009

C++ String function: replace

Syntax
 #include <string>
 string& replace(size_type index, size_type num, const string& str);
 string& replace(size_type index1, size_type num1, const string& str, size_type index2,
size_type num2);
 string& replace(size_type index, size_type num, const char* str);
 string& replace(size_type index, size_type num1, const char* str, size_type num2);
 string& replace(size_type index, size_type num1, size_type num2, char ch);
 string& replace(iterator start, iterator end, const string& str);
 string& replace(iterator start, iterator end, const char* str);
 string& replace(iterator start, iterator end, const char* str, size_type num);
 string& replace(iterator start, iterator end, size_type num, char ch);

The function replace() either:
• replaces characters of the current string with up to num characters from str, beginning at index,

• replaces up to num1 characters of the current string (starting at index1) with up to num2 characters from str beginning at
index2,

• replaces up to num characters of the current string with characters from str, beginning at index in str,

• replaces up to num1 characters in the current string (beginning at index1) with num2 characters from str beginning at
index2,

• replaces up to num1 characters in the current string (beginning at index) with num2 copies of ch,

• replaces the characters in the current string from start to end with str,

• replaces characters in the current string from start to end with num characters from str,

• or replaces the characters in the current string from start to end with num copies of ch.

For example, the following code displays the string "They say he carved it himself...find your soul-mate, Homer."
 string s = "They say he carved it himself...from a BIGGER spoon";
 string s2 = "find your soul-mate, Homer.";
 s.replace(32, s2.length(), s2);
 cout << s << endl;

C++ String function: reserve

Syntax
 #include <string>
 void reserve(size_type size);

The reserve() function sets the capacity of the string to at least size.

reserve() runs in linear time.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 179

C++ String function: resize

Syntax
 #include <string>
 void resize(size_type size, const TYPE& val = TYPE());

The function resize() changes the size of the string to size. If val is specified then any newly-created elements will be
initialized to have a value of val.

This function runs in linear time.

C++ String function: rfind

Syntax
 #include <string>
 size_type rfind(const string& str, size_type index);
 size_type rfind(const char* str, size_type index);
 size_type rfind(const char* str, size_type index, size_type num);
 size_type rfind(char ch, size_type index);

The rfind() function either:
• returns the location of the first occurrence of str in the current string, doing a reverse search from index, string::npos if

nothing is found,
• returns the location of the first occurrence of str in the current string, doing a reverse search from index, searching at

most num characters, string::npos if nothing is found,

• or returns the location of the first occurrence of ch in the current string, doing a reverse search from index, string::npos if
nothing is found.

For example, in the following code, the first call to rfind() returns string::npos, because the target word is not within the first 8
characters of the string. However, the second call returns 9, because the target word is within 20 characters of the beginning of
the string.
 int loc;
 string s = "My cat's breath smells like cat food.";
 loc = s.rfind("breath", 8);
 cout << "The word breath is at index " << loc << endl;
 loc = s.rfind("breath", 20);
 cout << "The word breath is at index " << loc << endl;

C++ String function: size

Syntax
 #include <string>
 size_type size() const;

The size() function returns the number of elements in the current string.

C/C++ Language Reference

180 TR0173 (v4.0) April 6, 2009

C++ String function: substr

Syntax
 #include <string>
 string substr(size_type index, size_type length = npos);

The substr() function returns a substring of the current string, starting at index, and length characters long. If length is
omitted, it will default to string::npos, and the substr() function will simply return the remainder of the string starting at index.

For example:
 string s("What we have here is a failure to communicate");
 string sub = s.substr(21);
 cout << "The original string is " << s << endl;
 cout << "The substring is " << sub << endl;

displays
 The original string is What we have here is a failure to communicate
 The substring is a failure to communicate

C++ String function: swap

Syntax
 #include <string>
 void swap(container& from);

The swap() function exchanges the elements of the current string with those of from. This function operates in constant time.

For example, the following code uses the swap() function to exchange the values of two strings:
 string first("This comes first");
 string second("And this is second");
 first.swap(second);
 cout << first << endl;
 cout << second << endl;

The above code displays:
 And this is second
 This comes first

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 181

C++ String Stream Functions
String streams are similar to the <iostream> and <fstream> libraries, except that string streams allow you to perform I/O on
strings instead of streams. The <sstream> library provides functionality similar to sscanf() and sprintf() in the standard C library.
Three main classes are available in <sstream>:

• stringstream - allows input and output

• istringstream - allows input only

• ostringstream - allows output only

String streams are actually subclasses of iostreams, so all of the functions available for iostreams are also available for
stringstream. See the C++ I/O functions for more information.

rdbuf get the buffer for a string stream

str get or set the stream's string

String Stream Constructors

Syntax
 #include <sstream>
 stringstream()
 stringstream(openmode mode)
 stringstream(string s, openmode mode)
 ostringstream()
 ostringstream(openmode mode)
 ostringstream(string s, openmode mode)
 istringstream()
 istringstream(openmode mode)
 istringstream(string s, openmode mode)

The stringstream, ostringstream, and istringstream objects are used for input and output to a string. They behave in a manner
similar to fstream, ofstream and ifstream objects.
The optional mode parameter defines how the file is to be opened, according to the io stream mode flags. An ostringstream
object can be used to write to a string. This is similar to the C sprintf() function. For example:
 ostringstream s1;
 int i = 22;
 s1 << "Hello " << i << endl;
 string s2 = s1.str();
 cout << s2;

An istringstream object can be used to read from a string. This is similar to the C sscanf() function. For example:
 istringstream stream1;
 string string1 = "25";
 stream1.str(string1);
 int i;
 stream1 >> i;
 cout << i << endl; // displays 25

C/C++ Language Reference

182 TR0173 (v4.0) April 6, 2009

You can also specify the input string in the istringstream constructor as in this example:
 string string1 = "25";
 istringstream stream1(string1);
 int i;
 stream1 >> i;
 cout << i << endl; // displays 25

A stringstream object can be used for both input and output to a string like an fstream object.

String Stream Operators

Syntax
 #include <sstream>
 operator<<
 operator>>

Like C++ I/O Streams, the simplest way to use string streams is to take advantage of the overloaded << and >> operators.

The << operator inserts data into the stream. For example:
 stream1 << "hello" << i;

This example inserts the string "hello" and the variable i into stream1. In contrast, the >> operator extracts data out of a string
stream:
 stream1 >> i;

This code reads a value from stream1 and assigns the variable i that value.

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 183

C++ String stream function: rdbuf

Syntax
 #include <sstream>
 stringbuf* rdbuf();

The rdbuf() function returns a pointer to the string buffer for the current string stream.

C++ String stream function: str

Syntax
 #include <sstream>
 void str(string s);
 string str();

The function str() can be used in two ways. First, it can be used to get a copy of the string that is being manipulated by the
current stream string. This is most useful with output strings. For example:
 ostringstream stream1;
 stream1 << "Testing!" << endl;
 cout << stream1.str();

Second, str() can be used to copy a string into the stream. This is most useful with input strings. For example:
 istringstream stream1;
 string string1 = "25";
 stream1.str(string1);

str(), along with clear(), is also handy when you need to clear the stream so that it can be reused:
 istringstream stream1;
 float num;

 // use it once
 string string1 = "25 1 3.235\n1111111\n222222";
 stream1.str(string1);
 while(stream1 >> num) cout << "num: " << num << endl; // displays numbers, one per line

 // use the same string stream again with clear() and str()
 string string2 = "1 2 3 4 5 6 7 8 9 10";
 stream1.clear();
 stream1.str(string2);

 while(stream1 >> num) cout << "num: " << num << endl; // displays numbers, one per line

C/C++ Language Reference

184 TR0173 (v4.0) April 6, 2009

C++ Miscellaneous Functions

auto_ptr create pointers that automatically destroy objects

C++ Miscellaneous function: auto_ptr

Syntax
 #include <memory>
 auto_ptr<class TYPE> name

The auto_ptr class allows the programmer to create pointers that point to other objects. When auto_ptr pointers are destroyed,
the objects to which they point are also destroyed.

The auto_ptr class supports normal pointer operations like =, *, and ->, as well as two functions TYPE* get() and TYPE*
release(). The get() function returns a pointer to the object that the auto_ptr points to. The release() function acts similarily to the
get() function, but also relieves the auto_ptr of its memory destruction duties. When an auto_ptr that has been released goes
out of scope, it will not call the destructor of the object that it points to.
Warning: It is generally a bad idea to put auto_ptr objects inside C++ STL containers. C++ containers can do funny things with
the data inside them, including frequent reallocation (when being copied, for instance). Since calling the destructor of an
auto_ptr object will free up the memory associated with that object, any C++ container reallocation will cause any auto_ptr
objects to become invalid.

Example
 #include <memory>
 using namespace std;

 class MyClass
 {
 public:
 MyClass() {} // nothing
 ~MyClass() {} // nothing
 void myFunc() {} // nothing
 };

 int main()
 {
 auto_ptr<MyClass> ptr1(new MyClass), ptr2;

 ptr2 = ptr1;
 ptr2->myFunc();

 MyClass* ptr = ptr2.get();

 ptr->myFunc();

 return 0;
 }

C/C++ Language Reference

TR0173 (v4.0) April 6, 2009 185

Revision History

Date Version No. Revision

24-Jan-2008 1.0 Initial release

19-May-2008 2.0 Processor specific C keywords and intrinsic functions added

07-Nov-2008 3.0 Added and changed processor specific keywords

06-Apr-2009 4.0 Added C++

Copyright © 2009 Altium Limited. All Rights Reserved.

The material provided with this notice is subject to various forms of national and international intellectual property protection, including but not
limited to copyright protection. You have been granted a non-exclusive license to use such material for the purposes stated in the end-user
license agreement governing its use. In no event shall you reverse engineer, decompile, duplicate, distribute, create derivative works from or in
any way exploit the material licensed to you except as expressly permitted by the governing agreement. Failure to abide by such restrictions
may result in severe civil and criminal penalties, including but not limited to fines and imprisonment. Provided, however, that you are permitted
to make one archival copy of said materials for back up purposes only, which archival copy may be accessed and used only in the event that the
original copy of the materials is inoperable. Altium, Altium Designer, Board Insight, DXP, Innovation Station, LiveDesign, NanoBoard, NanoTalk,
OpenBus, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective logos are trademarks or registered trademarks
of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their respective owners
and no trademark rights to the same are claimed. v8.0 31/3/08

	C/C++ Operator Precedence
	C/C++ Data Types
	Type Modifiers
	Type Sizes and Ranges
	C Data Types (ARM)
	C Data Types (MicroBlaze)
	C Data Types (Nios II)
	C Data Types (PowerPC)
	C Data Types (TSK3000)
	C Data Types (TSK51x/TSK52x)
	C Data Types (TSK80x)

	Memory Types
	Memory Types (MicroBlaze)
	Memory Types (Nios II)
	Memory Types (PowerPC)
	Memory Types (TSK3000)
	Memory Types (TSK51x/TSK52x)
	Memory Types (TSK80x)

	Complexity
	Constant Escape Sequences
	ASCII Chart
	Pre-processor Commands
	Pre-processor command: #, ##
	Pre-processor command: #define
	Pre-processor command: #error
	Pre-processor command: #if, #ifdef, #ifndef, #else, #elif, #endif
	Pre-processor command: #include
	Pre-processor command: #line
	Pre-processor command: #pragma
	Pre-processor command: #undef
	Predefined preprocessor variables

	C/C++ Keywords
	C/C++ Keywords
	C/C++ keyword: asm
	C/C++ keyword: auto
	C/C++ keyword: bool
	C/C++ keyword: break
	C/C++ keyword: case
	C/C++ keyword: catch
	C/C++ keyword: char
	C/C++ keyword: class
	C/C++ keyword: const
	C/C++ keyword: const_cast
	C/C++ keyword: continue
	C/C++ keyword: default
	C/C++ keyword: delete
	C/C++ keyword: do
	C/C++ keyword: double
	C/C++ keyword: dynamic_cast
	C/C++ keyword: else
	C/C++ keyword: enum
	C/C++ keyword: explicit
	C/C++ keyword: export
	C/C++ keyword: extern
	C/C++ keyword: false
	C/C++ keyword: float
	C/C++ keyword: for
	C/C++ keyword: friend
	C/C++ keyword: goto
	C/C++ keyword: if
	C keyword: inline
	C/C++ keyword: int
	C/C++ keyword: long
	C/C++ keyword: mutable
	C/C++ keyword: namespace
	C/C++ keyword: new
	C/C++ keyword: operator
	C/C++ keyword: private
	C/C++ keyword: protected
	C/C++ keyword: public
	C/C++ keyword: register
	C/C++ keyword: reinterpret_cast
	C/C++ keyword: restrict
	C/C++ keyword: return
	C/C++ keyword: short
	C/C++ keyword: signed
	C/C++ keyword: sizeof
	C/C++ keyword: static
	C/C++ keyword: static_cast
	C/C++ keyword: struct
	C/C++ keyword: switch
	C/C++ keyword: template
	C/C++ keyword: this
	C/C++ keyword: throw
	C/C++ keyword: true
	C/C++ keyword: try
	C/C++ keyword: typedef
	C/C++ keyword: typeid
	C/C++ keyword: typename
	C/C++ keyword: union
	C/C++ keyword: unsigned
	C/C++ keyword: using
	C/C++ keyword: virtual
	C/C++ keyword: void
	C/C++ keyword: volatile
	C/C++ keyword: wchar_t
	C/C++ keyword: while

	Processor Specific Keywords
	Processor specific keyword: __asm()
	Processor specific keyword: __asm() (ARM)
	Processor specific keyword: __asm() (MicroBlaze)
	Processor specific keyword: __asm() (Nios II)
	Processor specific keyword: __asm() (PowerPC)
	Processor specific keyword: __asm() (TSK3000)
	Processor specific keyword: __asm() (TSK51x/TSK52x)
	Processor specific keyword: __asm() (TSK80x)

	Processor specific keyword: __at() (all processors)
	Processor specific keyword: __frame()
	Processor specific keyword: __frame() (ARM)
	Processor specific keyword: __frame() (MicroBlaze)
	Processor specific keyword: __frame() (TSK51x/TSK52x)
	Processor specific keyword: __frame() (TSK80x)

	Processor specific keyword: __interrupt
	Processor specific keyword: __interrupt() (MicroBlaze)
	Processor specific keyword: __interrupt (Nios II)
	Processor specific keyword: __interrupt() (TSK3000)
	Processor specific keyword: __interrupt() (TSK51x/TSK52x)
	Processor specific keyword: __interrupt(), __interrupt_indirect() (PowerPC)
	Processor specific keyword: __interrupt_nmi, __interrupt_mode1, __interrupt_mode2 (TSK80x)
	Processor specific keyword: __interrupt_und, __interrupt_svc, __interrupt_iabt, __interrupt_dabt, __interrupt_irq, __interrupt_fiq, __interrupt() (ARM)

	Processor specific keyword: __nesting_enabled (ARM)
	Processor specific keyword: __noinline (all processors)
	Processor specific keyword: __novector (ARM)
	Processor specific keyword: __noregaddr (TSK51x/TSK52x)
	Processor specific keyword: __packed__ (all 32-bit processors)
	Processor specific keyword: __registerbank() (TSK51x/TSK52x)
	Processor specific keyword: __reset (TSK80x)
	Processor specific keyword: __static, __reentrant (TSK51x/TSK52x)
	Processor specific keyword: __system (MicroBlaze)
	Processor specific keyword: __unaligned (all 32-bit processors)

	Intrinsic functions
	Intrinsic function: __alloc
	Intrinsic function: __break
	Intrinsic function: __cgetfsl (MicroBlaze)
	Intrinsic function: __cputfsl (MicroBlaze)
	Intrinsic function: __dotdotdot__
	Intrinsic function: __dotdotdot__ (Nios II)
	Intrinsic function: __free
	Intrinsic function: __get_return_address
	Intrinsic function: __getapsr (ARM)
	Intrinsic function: __getbit (TSK51x/TSK52x)
	Intrinsic function: __getcpsr (ARM)
	Intrinsic function: __getfsl (MicroBlaze)
	Intrinsic function: __getfsr (MicroBlaze)
	Intrinsic function: __getipsr (ARM)
	Intrinsic function: __getmsr (MicroBlaze)
	Intrinsic function: __getpc (MicroBlaze)
	Intrinsic function: __getsp (TSK80x)
	Intrinsic function: __getspsr (ARM)
	Intrinsic function: __mfc0 (TSK3000)
	Intrinsic function: __mfctr (PowerPC)
	Intrinsic function: __mflr (PowerPC)
	Intrinsic function: __mfmsr (PowerPC)
	Intrinsic function: __mfspr (PowerPC)
	Intrinsic function: __mfxer (PowerPC)
	Intrinsic function: __msrclr (MicroBlaze)
	Intrinsic function: __msrset (MicroBlaze)
	Intrinsic function: __mtc0 (TSK3000)
	Intrinsic function: __mtctr (PowerPC)
	Intrinsic function: __mtlr (PowerPC)
	Intrinsic function: __mtmsr (PowerPC)
	Intrinsic function: __mtspr (PowerPC)
	Intrinsic function: __mtxer (PowerPC)
	Intrinsic function: __nop
	Intrinsic function: __putbit (TSK51x/TSK52x)
	Intrinsic function: __putfsl (MicroBlaze)
	Intrinsic function: __putfsr (MicroBlaze)
	Intrinsic function: __putmsr (MicroBlaze)
	Intrinsic function: __rol (TSK51x/TSK52x)
	Intrinsic function: __ror (TSK51x/TSK52x)
	Intrinsic function: __setapsr (ARM)
	Intrinsic function: __setcpsr (ARM)
	Intrinsic function: __setsp (TSK80x)
	Intrinsic function: __setspsr (ARM)
	Intrinsic function: __svc (ARM)
	Intrinsic function: __testclear (TSK51x/TSK52x)
	Intrinsic function: __vsp__ (TSK51x/TSK52x)

	Standard C Library
	Standard C Date & Time Functions
	Standard C date & time function: asctime
	Standard C date & time function: clock
	Standard C date & time function: ctime
	Standard C date & time function: difftime
	Standard C date & time function: gmtime
	Standard C date & time function: localtime
	Standard C date & time function: mktime
	Standard C date & time function: setlocale
	Standard C date & time function: strftime
	Standard C date & time function: time

	Standard C I/O Functions
	Standard C I/O function: clearerr
	Standard C I/O function: fclose
	Standard C I/O function: feof
	Standard C I/O function: ferror
	Standard C I/O function: fflush
	Standard C I/O function: fgetc
	Standard C I/O function: fgetpos
	Standard C I/O function: fgets
	Standard C I/O function: fopen
	Standard C I/O function: fprintf
	Standard C I/O function: fputc
	Standard C I/O function: fputs
	Standard C I/O function: fread
	Standard C I/O function: freopen
	Standard C I/O function: fscanf
	Standard C I/O function: fseek
	Standard C I/O function: fsetpos
	Standard C I/O function: ftell
	Standard C I/O function: fwrite
	Standard C I/O function: getc
	Standard C I/O function: getchar
	Standard C I/O function: gets
	Standard C I/O function: perror
	Standard C I/O function: printf
	Standard C I/O function: putc
	Standard C I/O function: putchar
	Standard C I/O function: puts
	Standard C I/O function: remove
	Standard C I/O function: rename
	Standard C I/O function: rewind
	Standard C I/O function: scanf
	Standard C I/O function: setbuf
	Standard C I/O function: setvbuf
	Standard C I/O function: sprintf
	Standard C I/O function: sscanf
	Standard C I/O function: tmpfile
	Standard C I/O function: tmpnam
	Standard C I/O function: ungetc
	Standard C I/O function: vprintf, vfprintf, and vsprintf

	Standard C Math Functions
	Standard C math function: abs
	Standard C math function: acos
	Standard C math function: asin
	Standard C math function: atan
	Standard C math function: atan2
	Standard C math function: ceil
	Standard C math function: cos
	Standard C math function: cosh
	Standard C math function: div
	Standard C math function: exp
	Standard C math function: fabs
	Standard C math function: floor
	Standard C math function: fmod
	Standard C math function: frexp
	Standard C math function: labs
	Standard C math function: ldexp
	Standard C math function: ldiv
	Standard C math function: log
	Standard C math function: log10
	Standard C math function: modf
	Standard C math function: pow
	Standard C math function: sin
	Standard C math function: sinh
	Standard C math function: sqrt
	Standard C math function: tan
	Standard C math function: tanh

	Standard C Memory Functions
	Standard C memory function: calloc
	Standard C memory function: free
	Standard C memory function: malloc
	Standard C memory function: realloc

	Standard C String and Character Functions
	Standard C string and character function: atof
	Standard C string and character function: atoi
	Standard C string and character function: atol
	Standard C string and character function: isalnum
	Standard C string and character function: isalpha
	Standard C string and character function: iscntrl
	Standard C string and character function: isdigit
	Standard C string and character function: isgraph
	Standard C string and character function: islower
	Standard C string and character function: isprint
	Standard C string and character function: ispunct
	Standard C string and character function: isspace
	Standard C string and character function: isupper
	Standard C string and character function: isxdigit
	Standard C string and character function: memchr
	Standard C string and character function: memcmp
	Standard C string and character function: memcpy
	Standard C string and character function: memmove
	Standard C string and character function: memset
	Standard C string and character function: strcat
	Standard C string and character function: strchr
	Standard C string and character function: strcmp
	Standard C string and character function: strcoll
	Standard C string and character function: strcpy
	Standard C string and character function: strcspn
	Standard C string and character function: strerror
	Standard C string and character function: strlen
	Standard C string and character function: strncat
	Standard C string and character function: strncmp
	Standard C string and character function: strncpy
	Standard C string and character function: strpbrk
	Standard C string and character function: strrchr
	Standard C string and character function: strspn
	Standard C string and character function: strstr
	Standard C string and character function: strtod
	Standard C string and character function: strtok
	Standard C string and character function: strtol
	Standard C string and character function: strtoul
	Standard C string and character function: strxfrm
	Standard C string and character function: tolower
	Standard C string and character function: toupper

	Other Standard C Functions
	Standard C function: abort
	Standard C function: assert
	Standard C function: atexit
	Standard C function: bsearch
	Standard C function: exit
	Standard C function: getenv
	Standard C function: longjmp
	Standard C function: qsort
	Standard C function: raise
	Standard C function: rand
	Standard C function: setjmp
	Standard C function: signal
	Standard C function: srand
	Standard C function: system
	Standard C function: va_arg, va_list, va_start, and va_end

	C++
	C++ Containers
	C++ Iterators
	C++ Exceptions
	C++ I/O Functions
	C++ I/O Examples
	I/O Constructors
	C++ I/O Flags
	C++ I/O function: bad
	C++ I/O function: clear
	C++ I/O function: close
	C++ I/O function: eof
	C++ I/O function: fail
	C++ I/O function: fill
	C++ I/O function: flags
	C++ I/O function: flush
	C++ I/O function: gcount
	C++ I/O function: get
	C++ I/O function: getline
	C++ I/O function: good
	C++ I/O function: ignore
	C++ I/O function: open
	C++ I/O function: peek
	C++ I/O function: precision
	C++ I/O function: put
	C++ I/O function: putback
	C++ I/O function: rdstate
	C++ I/O function: read
	C++ I/O function: seekg
	C++ I/O function: seekp
	C++ I/O function: setf
	C++ I/O function: sync_with_stdio
	C++ I/O function: tellg
	C++ I/O function: tellp
	C++ I/O function: unsetf
	C++ I/O function: width
	C++ I/O function: write

	C++ String Functions
	String constructors
	String operators
	C++ String function: append
	C++ String function: assign
	C++ String function: at
	C++ String function: begin
	C++ String function: c_str
	C++ String function: capacity
	C++ String function: clear
	C++ String function: compare
	C++ String function: copy
	C++ String function: data
	C++ String function: empty
	C++ String function: end
	C++ String function: erase
	C++ String function: find
	C++ String function: find_first_not_of
	C++ String function: find_first_of
	C++ String function: find_last_not_of
	C++ String function: find_last_of
	C++ String function: getline
	C++ String function: insert
	C++ String function: length
	C++ String function: max_size
	C++ String function: push_back
	C++ String function: rbegin
	C++ String function: rend
	C++ String function: replace
	C++ String function: reserve
	C++ String function: resize
	C++ String function: rfind
	C++ String function: size
	C++ String function: substr
	C++ String function: swap

	C++ String Stream Functions
	String Stream Constructors
	String Stream Operators
	C++ String stream function: rdbuf
	C++ String stream function: str

	C++ Miscellaneous Functions
	C++ Miscellaneous function: auto_ptr

	Revision History

