Allocating Address Space in a 32-bit
Processor

sSumm ary This application note provides detailed information on mapping memory and
peripherals into a 32-bit processor's address space.

Application Note
AP0149 (v2.0) February 27, 2008

An FPGA design incorporating a 32-bit processor will typically involve the connection of slave memory and peripheral devices —
to the processor’s External Memory and Peripheral I/O interfaces respectively. This is physical connection, the wiring of the
devices to the processor. At this point, the processor — and more importantly the embedded code therein — is 'unaware' of the
existence of such devices, with respect to its address space. These physical slave devices must now be mapped into specific
locations within that address space.

The 'memory map', as it is often called, is essentially the bridge between the hardware and software projects — the hardware
team allocating each of the various memory and peripheral devices their own chunk of the processor's address space, the
software team then writing their code to access the memory and peripherals at the given locations.

Address Space Mapping - Overview

Processor address space can be configured from within the FPGA project (both Memory and Peripheral 1/0) or the Embedded
Software project (Memory only). In both cases, mapping can be achieved quickly by importing slave device information directly
from the relevant schematic sheet. Once imported, the mapping of devices can be ‘hand-crafted’ as required. With respect to
the Embedded Software project, you can also opt to automatically import dedicated memory mapping definitions directly from
the FPGA project upon compilation.

You can also generate .asm and/or . h files for the Embedded Software project, upon FPGA project compilation, providing a
means to quickly and efficiently address devices from within the embedded source code.

Figure 1 summarizes the key elements to defining processor address space in terms of memory and peripheral /0O and where
such elements can be defined.

AP0149 (v2.0) February 27, 2008 1

Allocating Address Space in a 32-bit Processor

FPGA PROJECT (*.PrjFpg) EMBEDDED PROJECT (*.PrjEmb)

Schematic Document (*.SchDoc) Options for Embedded Project

g E Configure Memory tab
% a Mapping of physical
3 5‘ > memory devices into

Processor address space
/ (External and Internal

Memory)
1
1
A 4 A 4 ' Sections/Reserved
Configure Peripheral Configure Processor Memory I Areas tab
Dialog Dialog |
Optional impért
upon compilation Specification of logical
Mapping of peripheral Mapping of physical memory of FPGA project sections and/or reserved
devices into Processor devices into Processor address areas of memory
address space (Peripheral space (External and Internal
1/0) Memory)

hardware.asm
»
Ll
Optional file generation upon compilation of FPGA
project »
hardware.h
>

A 4

Figure 1. Configuring Processor Memory and Peripheral 1/O.

A Word on Mapping Physical Memory...

When configuring processor memory, the physical memory devices are mapped into the processor’s address space — in the
Internal and External Memory ranges — but can also be further broken down into separate logical spaces (or sections) for
reference by and within the embedded source code. Figure 2 illustrates this concept of memory space allocation.

Processor Memory Space Physical Memory Devices
Static Definition in Hardware Example FPGA Implementation Logical Memory Sections
FFFF_FFFF
Frocessor 0 Space
#ecass is provide through the
Wishbone 170 Master Port
Usually a WB_INTERCON compenent
would be usedto share this space
FFO0_000D across a number of peripherals
FEFF_FFFF
Frocessor hisin Memory Space
#fecess is provided through the
Wfishbone hemery haster Fort
Section T - 41 B
AMME_INTERC ON component an Shared with FFT Harduare (for example)
be used to share this space across
2 number of memory devices T BrA 2000000 .
Dual Port FPGA BRAM e
1K x 2-bit (4K B d
X (3K Byte) Shared with %54 Controller (for example)
W04 0000 N Section Stackrea - G4k TO0F_FFFF
U_NB_SRAu Mo Inftializeation required
ManoBoard SRAW 100F_pooo
2000_0000 128K x 16-bit (266K Byte) Section Miaivanable - GaK TO0E_FFFF
B IR e P PP PR P PP PEEPPPEEET! BEEE “riables that do not require high speed ascess
and can be initialized by application 1o zer _100E poon _
Seotion MWaEMConstant - 128K TO0E_FFFF
mewopooo | ‘ariables that da not require high speed access
U_0B_s R and must be initialized with values 100C_0000
Daughter Board SR EEitEiiE
! T00B_FFFF
woapoon | BT R) B Section MeinCode - 765K
Coda that s net spaed criical
1000_0000__
0100_0000
B e Section _FastConstant 000_DFFF
- Intemal-emory Constants tha require high speed accass
Single Cyele Block Fibl (No Cache) o must be initialized before reset. G000 _0END
1K TBMB can be fitted depending Seston FoSTETaE Bo6D BOFF
on the availability of FFGA BRAM “riables that require high speed access
R o (o e e £aees and can be inttialized by application to zero 0000_0Con
0000 1000 Section .BoctLode it _GBFF
EEEEEEE R S bbb Resethotor T U7 - 7% x 52 Dual Port FEGA Blook REM Contains reset wector, boot loader, exception vectars
M e ST ERy e and ather code that must run 2z single eyels or be
0000 0000 Pyl {4k Byres) available 1o the boot program. 0000 _000_

Figure 2. Allocating processor and physical device memory spaces.

2 AP0149 (v2.0) February 27, 2008

Allocating Address Space in a 32-bit Processor

From left to right, Figure 2 shows:

e The predefined memory architecture of the 32-bit processor. The 4GB linear address space divided between Internal

Memory (16MB), External Memory and Peripheral I/O space (16MB). This architecture is static (i.e. cannot be changed by
the user)

e Physical memory spaces. In the example of Figure 2, there are four physical memory spaces — Internal Memory, Daughter
Board SRAM, NanoBoard SRAM and FPGA BRAM. The dotted lines indicate where in the processor’s address space these
physical devices are mapped, and the sizing of each

e Logical memory spaces, showing the mapping of specific sections within the embedded code to the physical device memory.

Mapping Physical Memory from within the FPGA Project

Typically, the required physical memory devices will be added to the design and wired to the processor's External Memory
interface accordingly, before mapping is performed. To illustrate, consider the circuitry of Figure 3.

T_MCTIL U_DNTERC O _MEM U_DE_SRAM
TSE3000.4 WE_INTERCOH WE_MEN_CTEL
TSK3000A 32-Bit RISC Processor Wishbone Interconnect SRAM Controller
10_STE_O ME_STE_ 0| J——t={ fm0_STE_I L STE_I SEAMO_D[15.0]
I0_C¥C_0 ME_C¥C_0| g fm0_C¥C_T _C¥C_| CYC_I SRAMI_A[1E.0]
10_ACK,] ME_ACE I <+—<{im)_ACE_0 ACE_O SEAMO_CE i=
10_ADE_0[23.0] ME_ADE_O[F1.0] m_4DE_IF1.0] s0_ADE_0[20.0] ADE_I[20.0] SEAMD_WE i=
10_DAT IE1.0] ME_DAT IE1.0] mi)_DAT_0[31.0] <0_DAT IE1.0] DAT_0FE1.0] SEAMI_OE 5
10_DAT O[E1.0] ME_DAT 0F1.0] mi)_DAT IE1.0] <0_DAT 0F1.0] DAT IE1.0] SEAMD_TTR &
10_SEL_0[.0] ME_SEL_0O[5.0] mi)_SEL_I[E.1] <_SEL_0[3.10] SEAMO_LE =]
10_WE_0 ME_WE_0 | f—-i={ mil_WE_T
10_CLE O ME_CLE_0{p—-={m)_CLE_I _CLE_ ! ¥ SRATL_D[15.0] SRANIL_D[15.0]
10_EST O ME_RST 0| f=—-t={fm0_EST [_RST | "] SRATL_A[18.0] SRANIL_A[18.0]
T _IE1.0] i-] SEAML E
i={ SEAN W
Current Confi guration i SEAN] OE
i=| SEAN] UE
i SEAN] LE
CLE T
FRETT | SRAM Controller
STE_I SRAMO_D[7.0] RAMO_DATA[7 0]
CYC_I SRAML_D[7.0] RAM1_DATA[T 0]
ACE 0O SEAM CE x| RAM CS
s1_ADE_0[17.0] ADE_I[17.0] SRAM_A[16.0] LA M_ADDE[IE0
£1_DAT IE1.0] DAT_0[FE1.0] > RLAMD_WE
<1_DAT 0F1.0] DAT I[E1.0] & AT
<1_SEL_0[.0] t={ RAMD_OE
x| Ral{]l OE
BRAM Controller TR
STE_L ERAT_DIEL0] + DIIEL.0] CLE -
CY¥C_I ERAN_DO[RELD] } DOUTEL]
] ACE_O
s2_ADE_0[11.0] ADE_I[11.0] BEAN A[9.0] t ADDE[9.0]
<2 _DAT IE1.0] DAT OF1.0] BRAM_WE WE
£2_DAT_0F1.0] DAT IE1.0] BRAM_EN EN
<2 SEL_0[3.0] SEL_IE.0] ERAM_EW[.0] t EvteWE[0]
WE_I
CLE I EAMEEE 31E
EST T

Figure 3. Connection of physical memory devices to the 32-bit processor.

Here, physical memory on the NanoBoard and Daughter Board, as well as Block RAM within the target FPGA device, is
connected to the processor's External Memory interface. The processor in this case is a TSK3000A, but could just as easily be
swapped for any of the other 32-bit processors available in Altium Designer. Connection to the interface is made through use of
a configurable Wishbone Interconnect device (WB_INTERCON).

For more information on connecting physical memory devices to a processor, refer to the application note Connecting
Memory and Peripheral Devices to a 32-bit Processor.

From within the FPGA project, mapping of physical memory into the processor’s address space is performed using the
Configure Processor Memory dialog (Figure 4). Access this dialog by right-clicking on the symbol for the processor (in the
schematic) and choosing Configure Processor Memory from the context menu that appears. Alternatively, use the Configure
Processor Memory button available from the Component Properties dialog for the processor.

AP0149 (v2.0) February 27, 2008 3

Allocating Address Space in a 32-bit Processor

Configure Processon Memony E &‘
Processor Architecture Defined Memory Devices
Thiz is the processor's view of the memories
OxFFFF_FFFF OxFFFF_FFFF
OxFFFF_FFFF Processor 170 Space Reserved for Processor 1/0 Space OxFFFF_FFFF
ot 10 Port
of the processor of the processor

0xFFOO_0000
OxFEFF_FFFF

0xFFOO_0000

External-Memory Space

0x0107_FFFF
xram [Yolatile RAM)
0x0100_0000

Ox0100_ 0000
Ox0O0FF_FFFF

0x0000_FFFF
Internal-Memory ® =

Where the xrom [ROM])
0x0000_0000 IERRERES 0x0000_0000
0x0000_0000 0x0000_0000
Mame Address Size Type
IO 0 B4k ROM
HIam 01000000 B12k olatile Rk

Generate following files inta the subproject(z] at FPGA Project compilation
[hardware. asm [Assembly Filg] [hardware. h [C Header File)

‘ Set to Default |[Import From S chematic] [LConfigure Peripherals]

Figure 4. Configuring processor memory from within the FPGA project

The dialog is divided into two regions. The top region provides a visual summary of the memory devices that are currently
defined and mapped into the processor's address space — i.e. the processor's 'view' of the actual physical memories in the
design. The bottom region of the dialog provides a tabular listing of each of these defined memory devices.

Default memory devices are initially defined and mapped. These will vary depending on the processor type being configured.
For the TSK3000A in our example circuit, the following devices are mapped by default:

e xrom - this ROM device is mapped into the processor's Internal Memory address range, in order to cater for storage of the
processor's embedded code. Starting at address 0000_0000h, it is sized to give 64KB of Internal Memory

e Xxram - this RAM device is mapped into the processor's External Memory address range in order to cater for the storage of
data. Starting at address 0100_0000h, it is sized to give 512KB of external memory.

Bear in mind that these are default memory mappings — the actual physical devices may not yet exist in the design or, if they do,

may not be identical in size.

Controls are also provided in the dialog for generating header files (Assembly or C) upon compilation of the FPGA project.

The dialog also provides a Configure Peripherals button — allowing you to quickly jump between memory and peripheral

configuration dialogs. Note that when using this facility, you will be prompted to confirm whether you wish to save the

configuration of the current dialog before proceeding to the other dialog.

Importing Device Information from the FPGA Project Choose Wishbone Items PIX
Schematic Choose Wishbone Items
If you have connected your physical memory device(s) to the processor through a 'ieTl TERCON 10 'D";pr?:t‘;;‘;
Wishbone Interconnect, then the simplest way to make these devices 'known' to the CPot? Do nat impart
processor — and automatically have them mapped into the processor's address space — EETBS gz:z: :m:

is to use the Configure Processor Memory dialog's Import from Schematic feature. 8Ll INTERCOMN_ MEM “Impott

Launched by clicking on the Import From Schematic button, the feature essentially Eg—ggi: :QEE::

scans the FPGA design for configurable Wishbone Interconnect devices. All detected BRAM Import
interconnect devices, along with the slave devices associated to them, are presented in

the Choose Wishbone Items dialog (Figure 5). ok [sk

Figure 5. Selecting memory devices to
import into processor address space.

4 AP0149 (v2.0) February 27, 2008

Allocating Address Space in a 32-bit Processor

Prior to the dialog appearing, you will be given the choice of whether or not to delete any existing memory device definitions that
have been added. If you have not yet configured the processor memory, or want to start over again from a 'blank canvas' as it
were, then opting to delete here is the best course of action.

On the other hand, you may have already defined memories that you wish to keep. This can be the case when adding additional
physical memory to an already well-established design. In this case, it is better to not to delete the existing definitions, but rather
import just the addition(s).

Each slave memory device connected to an Interconnect is listed in the dialog, in terms of its identifier. This identifier is

assigned as part of the slave device's definition when configuring the Interconnect. The dialog offers the ability to import

selected devices or all devices associated to a given Interconnect, by clicking on the relevant entry in the Import to Bus column.
Choose the physical memory devices you wish to import and click OK.

Importing will:

¢ Add memory device definitions where they currently do not exist. The identifier of an Interconnect slave device — defined
when configuring the Interconnect — will be used to name the memory device definition.

e Update any existing memory device definitions, only if the identifier of the Interconnect Update to/preservation of existing

slave device matches that of an existing memory device definition. memory device definitions, will only

L . L . . be possible where you have opted to
e Preserve exisiting memory device definitions whose identifiers do not match those of the not delete the existing configuration

Interconnect slave devices being imported — leaving hand-crafted definitions untouched. before importing.

' Only the internal memory defined for the processor and physical memory devices
& connected to the processor via a Wishbone Interconnect device will be imported using the Import from Schematic feature. If
a memory device is connected directly to the processor's External Memory interface (via the appropriately configured

memory controller and any additional wiring), it will not be imported and mapped.

Figure 6 illustrates an example of this mapping based on the example schematic circuitry of Figure 3. The default memory
definitions have been deleted prior to import.

Configure Processor Memory. ? @
Processor Architecture Defined Memory Devices
Thiz iz the processor's view of the memories
OxFFFF_FFFF OxFFFF_FFFF
R Processor 1/0 Space Reserved for Processor 1/0 Space R
10 Port 10 Port
0xFFO0_0000 of the proceszor of the proceszor 0xFFO0_0000
OxFEFF_FFFF

0x0140_0FFF

BRAM latile RAM

External-Memory Space 1 INT[EFF?EaDheMEM)

0x0140_0000

0x0123_FFFF

NB_SBAM [Volatile BAM)
U_INTERCON_MEM

0x01Z0_0000

Ox011F_FFFF

DB_SBAM [Volatile BAM)
U_INTERCON_MEM

0x0100_0000
0x0100_0000 =

Ox00FF_FFFF

0x0000_1FFF
Internal-Memory ® =

‘Wwhere the U_MCU1 (ROM)
0x0000_0000 EalERbEs 0x0000_0000
= 0x0000_0000 0x0000_0000 =
Mame Address Size Type Interupts
U_MCLA a 8192 ROM
DE_SRAM (0x1000000 0x200000 Wolatile RaM
ME_SRaAM (0x1200000 (0x40000 Wolatile RaM
ER&M (0x1400000 Ox1000 Wolatile RaM

Generate following files into the subproject(z] at FPGA Project compilation
[hardware. asm [&ssembly Fils) [hardware.h [T Header Fils)

’ Set to Default “ Import From 5 chematic | ’ LConfigure Peripherals] ’ Qg] ’ Lancel]

Figure 6. Defining memory devices automatically by importing from the schematic.

If you do not wish to import any devices, simply click on the Skip button (in the Choose Wishbone Items dialog) — only the
definition of the processor's internal memory will be imported.

AP0149 (v2.0) February 27, 2008 5

Allocating Address Space in a 32-bit Processor

Managing Memory Device Definitions

Importing from the FPGA project schematic will define
memories from the processor's perspective that are
exactly in-line with the physical memory devices placed
and wired-up on the schematic sheet. Once imported,
you may well want to hand-craft how the processor
really 'sees' these memories. For example, you may
want to specify a single physical memory device in the
design to be seen as several memory devices by the
processor — essentially 'carving up' the address range
of the true physical device into sub-ranges.

New memory device definitions may be added, or
existing ones modified or deleted, using the available
commands on the right-click menu for the Configure
Processor Memory dialog. An existing memory device
can also be modified with respect to its definition by
double-clicking on its corresponding entry in the list
section of the dialog, or by double-clicking on its 'block’
in the graphical display. The associated Processor
Memory Definition dialog will appear (Figure 7).

The dialog enables you to accurately define the memory
device in terms of its size and base address —
specifying where in the processor's address space it is

Processor Memory Definition

Physical Memory Device
Marmne

DE_SRAM

The unique identifier of thiz memarny device.
When the FPGA project iz compiled these
memomny details will be paszed to the embedded
software project.

Thiz identifier will alzo be uged to uniquely
identify the output HE file.

Mames cannot contain spaces.

Type
Memaory Type: | RaM - Yolatile £
Memaory Type: |0 - Fastest w

Chonse the type and relative speed of the
mermony device.

The linker will use the relative speed settings of
the different memoaries to try and optimize averall
performance.

PX

Address Base
0x1000000

Thiz iz the proceszar'z view of where the
memmony appears in the address space.

The size can be specified az a decimal or hex

walue,
Ewxamples: 10000, 0=10000, 1k, 64k, 1k

Size
0x200000

Thiz reprezents the amount of memary that iz
available to the processar from this device.

The size can be specified az a decimal or hex
walue,

Examples: 10000, 010000, 1k, B4k, 18

| 1] | [Caricel

Figure 7. Defining a mapped physical memory device.

to be mapped. You can specify these values using decimal or Hex notation (e.g. 10000, 0x10000, 1k, 64k, 1M).

The Name field allows you to define a unique identifier for the device. The identifier for each

memory device will be used when generating header files for inclusion into the Embedded Software

project (see the section Generating Header Files for the Embedded Software Project). The
identifiers will also be used to uniquely identify the corresponding output HEX files.

The identifier used must not
contain any spaces.

The Type region of the dialog allows you to set the type and relative speed of the memory device. The memory type can be
either ROM or RAM (volatile or non-volatile). Six speed settings are available to choose from, ranging from O (fastest) to 5
(slowest). The Linker uses the speed settings for all defined memories in order to best optimize the overall performance and

efficiency of the code.

How the processor’'s memory address space is allocated to the various physical memory devices in
a design ultimately depends on the function of the physical memory device and individual design
requirements. All but one physical memory device will be mapped into the processor’s External
Memory address range. The exception is the Dual port FPGA Block RAM used to implement the
processor’s internal memory. This will be mapped into the processor's Internal Memory address

The memory device definitions
are stored as part of the
processor component.

range. This will always be mapped starting at the base address of 0000_0000h. The processor’s Internal Memory address
range is 16MB. The actual size of the physical RAM mapped into this range will be driven by how much physical BRAM is
available in the target FPGA device. This is typically between 4KB and 1MB.

AP0149 (v2.0) February 27, 2008

Allocating Address Space in a 32-bit Processor

Mapping Physical Memory from within the Embedded Project

From within the Embedded Software project, mapping of physical memory into the processor’s address space is performed from
the Configure Memory tab of the Options for Embedded Project dialog (Figure 8). Access this dialog by right-clicking on the
project’s entry in the Projects panel and choosing Project Options from the context menu that appears.

Options for Embedded Project Testlnstructions.PrjEmb @g|

Compiler Options || Files ‘with Options || Parameters | Configure Memary | Sections/Reserved Arsas

Processor Architecture Defined Memory Devices
Thiz iz the proceszor's view of the memaories
O0xFFFF_FFFF OxFFFF_FFFF
Ak A Processor 1/0 Space Reserved for Processor /0 Space AE it
10 Part 10 Part
of the processor of the processar

OxFFOO_0000
OxFEFF_FFFF

OxFFO0_0000

Ox0140_OFFF
BRAM [Volatile BAM)

External-Memory Space U_INTERCOM_MEM
0x0140_0000

O0x01Z2_FFFF
NB_SRAM [Volatile RAM)
U_INTERCON_MEM
0x0LZ0_0000
0x0Ll1F_FFFF

DB_SRAM [Volatile RAM)
U_INTERCON_MEM

0x0100_0000
0x0100_ 0000 =

Ox00FF_FFFF

0x0000_1FFF
Internal-Memory ® S

‘where the U_MCU1 (ROM)
0x0000_0000 Eotcodelesides 0x0000_0000
= 0x0000_0000 0x0000_0000 =
Mame Address Size Type Interupts
U_tMCIA 1] 192 FOM
DB_SRak 0x1000000 0200000 Wolatile Rk
ME_SRaM 01200000 0x40000 olatile RéM
ER&M 01400000 0x1000 olatile RéM

E Import From S chem. [&utomatically import when compling FPGA project
Set To Installation Defaults

Figure 8. Configuring processor memory from within the Embedded Software project

Controls for memory device definition are similar to those found in the Configure Processor Memory dialog when configuring
memory within the FPGA project. Use the right-click menu to access commands for adding new memory definitions, or for
editing/deleting existing definitions.

It is quite common for the Embedded software to be developed in parallel with the FPGA design and, with the two not linked, the
Embedded Software Developer has no knowledge of the physical memory devices being placed by the FPGA Designer.
Typically, the Embedded Software Developer will make an educated guess as to the memories available and continue to
develop accordingly, and independently.

When the time comes to synchronize the two independently-developed projects — linking the Embedded project as a sub-project
of the FPGA project — the Embedded Software Developer simply imports the memory definitions for the processor, from the
FPGA design. This can be achieved in two ways:

e Manually — by using the Import From Schematic button. The memory definitions stored with the processor component are
imported directly from the FPGA design, provided that the design has been compiled.

e Automatically — by enabling the Automatically import when compiling FPGA project option. When the FPGA project is
compiled, the memory device definitions for the processor will automatically be passed to the linked embedded software
project.

If you are manually defining memory device definitions in the Configure Memory tab of the Options for Embedded Project

* 4 dialog, those definitions will be stored as part of the Embedded project. While the Auto-Import option is not enabled, the
dialog will always use the project's stored definitions. When the Auto-Import option is enabled (and the Embedded and
FPGA projects linked), these project-based definitions will be by-passed, in favor of those definitions stored as part of the
processor component in the FPGA design.

AP0149 (v2.0) February 27, 2008 7

Allocating Address Space in a 32-bit Processor

Sections and Reserved Areas

Once the view of the physical memory devices has been defined from the processor's perspective, it is then possible to further
sub-divide these into logical sections. This allows the embedded software tools to place different parts of the software
application:

¢ into different physical memory devices and
¢ into different locations within a single physical memory device.

These named "sections” can then be referenced from assembler and C source code, to enable code and data to be placed at
certain memory locations. This allows for fine control over how the program is located or uses memory.

As well as defining areas in which to place code
‘sections’, you can also specify areas of memory

Options for Embedded Project Testinstructions.PrjEmb

that are off-limits to the Linker — reserved areas in Compiler Options | Files With Options || Parameters | Configure Memary | Sections/Reserved Areas
which code cannot be placed (analogous to the use Type Marne Space Location Size Fill Bit Pattern | Mote:

of keepouts from a physical board-level

perspective).

Sections and reserved areas are defined and
managed from the Sections/Reserved Areas tab
of the Options for Embedded Project dialog (Figure

9). Access thls.dlalog by.rlght-cllcklng on the . ’ T] ’ G v] ’ =T] ’ =T]

project’s entry in the Projects panel and choosing

Project Options from the context menu that [5et To Instalation Defauts | [o] [Carcel

appears. This tab can be also accessed directly

from the Component Properties dialog for the Figi_ure 9. Defining Sections and Reserved Areas as part of Embedded Project
options.

processor, from within the FPGA design.

Controls are provided, both in terms of buttons and a right-click menu, to add new Section and/or Reserved Area definitions, or
edit/delete existing ones.

Sections
Click the Add Section button within the Sections/Reserved Areas tab to access the Section dialog (Figure 10).

Section @@

Section
Mame Location
f.r‘iewS. ection il DHD
This iz a reference to the section defined in the This iz the processor's view of where the
source code. Section: can be uzed to create zection appears in the address space. The
finer control over the way the program is zize of the zection iz automatically allocated.

located or uzes memony.
The lozation can be specified as a decimal, a

Example [C Code]: To reference the text hex walue or a memory.
zection of a section definition #pragma section Eramples: 10000, 0410000, 1k, B4k, T,
"myzec .. <c coder .. Bpragma endzection, T MEMNEME
uze the name .text mysec
Fill Bit Pattem
Example [A5M Cadz]: Ta reference the section i
defined by .zection _text. mysec, at[0x01000000) |
... <asmcoder . endzec, use the name Used to intialize the empty spaces at the end of
text.myzec the section as a result of Mall alignment,

If thiz zection iz located in ROM. leaving thiz
field empty filz the emply spaces with zeros.

If the section iz in BAM, leaving this field emply
means the empty spaces are not initialized.

Example: Db,

Maotes

| ak |l Cancel]

Figure 10. Defining a section within processor address space.

Use the Name region of the dialog to reference the required section defined in the source code. For example, if the source code
is written in assembly code (* .asm) and the following section is defined:

8 AP0149 (v2.0) February 27, 2008

Allocating Address Space in a 32-bit Processor

.section.text_shiftcontrol, at(0x02000000)

Code Statements

-endsec
then the name specified in the Section dialog in order to reference this section definition would be . text.shiftcontrol.

The Location region allows you to specify where in the processor's address space the section is to be located. Simply enter a
base address for the section — the size will be automatically allocated. You can specify the location using decimal or Hex
notation (e.g. 10000, 0x10000, 1k, 64k, 1M). Alternatively, you can specify the location as a specific memory, in the format
mem:memname.

The Fill Bit Pattern region allows you to specify a value to be used to initialize the empty spaces at the end of the section, as a
result of MAU alignment. Leaving this field empty will:

¢ Fill the empty spaces with zeros if the section is located in ROM
e Leave the empty spaces uninitialized, if the section is located in RAM.

Use the Notes section to add any comments, such as the purpose for the section, when it was added, who it was added by, etc.

Reserved Areas
Click the Add Reserved Area button within the Sections/Reserved Areas tab to access the Reserved Area dialog (Figure 11).

2)X]

Reserved Area

Reserved Area

Prevents an area from being uzed in the linking and lozating process

Location Size

| 000

This iz the processor's view of where the area
iz in the address space.

The lozation can be specified as a decimal or
hex walue.
Examples: 10000, 0410000, 1k, 64k, 1M

This reprazents the amaunt of memory ta be
reserved.

The zize can be specified az a decimal or hex
value.
Eramples: 10000, 0+10000, 1k, B4k, 1M

Fill Bit Pattarn

Usedtai e the reserved area. Leave this
field ermpty to naot intialize the rezerved area.
Example: Dudd,

Motes

| s H Lancel l

Figure 11. Defining a Reserved Area within processor address space.

The Location region allows you to specify where in the processor's address space the reserved area is to be located. Simply
enter a base address for the area, using decimal or Hex notation (e.g. 10000, 0x10000, 1k, 64k, 1M).

The Size region of the dialog enables you to specify how much memory should be reserved using this area definition. Enter the
value as required — again decimal or Hex notation can be used (e.g. 10000, 0x10000, 1k, 64k, 1M).

Use the Fill Bit Pattern region to specify a value with which to initialize the reserved area, if required.
Use the Notes section to add any comments, such as when the area was added, who it was added by, etc.

AP0149 (v2.0) February 27, 2008 9

Allocating Address Space in a 32-bit Processor

Configuring Processor Peripheral I/O

Typically, the required peripheral devices will be added to the design and wired to the processor's Peripheral I/O interface
accordingly, before mapping is performed. To illustrate, consider the circuitry of Figure 12.

U_MCIL
U Part32 10 U_INTERCOH_I0 TSES000 4

TSK3000A 32-Bit RISC Processor

Wishbone Interconnect

Port Wishhone

gttt Chyt[s] 0
Poptsgtt Bila] 0]

<0_STE_O
0_CYC_0
0_ACE_I
0 ADER_O[1.0]
0 DAT IE1.0]

e
LT
WL
[T L Y

I
L | I

ot iR (hi[E] 0
Pogt23E =] 0

I AT L 1Y
0
I

7]
7]
7|

|
|
1|

Pogt 30 Chit[Z1.0
Pogt 3 Chitf51 0

1|

mi
1 |

h
T W e A AV

Fogtsd
Fogtsd

Chat[3].00
Chat[3] [0

I

U
T

WE_PETIO

WAL
i T |

l‘"
5T

a1
a1

Forkleg, [hyt 1l

Pt lnE [ht []

Zl

il
S L

[h [l
Chg]

il

& [hit[J7 Il
i A

WL A
L T

Bt]7 (]
Pot2E Jo[7 0

'r'i
kT |

n
Lk

Porps 0 Chat[r [
S = PO

ooy
|

Chat [7 .10
sl

(M Cwed=p|Spare_THT_I[E1.0]

WE_IMTERCOH

Figure 12. Connection of peripheral I/O devices to the 32-bit processor.

Here, three configurable Wishbone port devices (configured with 8-, 16- and 32-bit data widths respectively) have been
connected to a TSK3000A 32-bit processor. Connection to the processor's External Peripheral 1/O interface is made through a
configurable Wishbone Interconnect device (WB_INTERCON).

For more information on connecting peripheral I/O devices to a processor, refer to the application note Connecting Memory

and Peripheral Devices to a 32-bit Processor.

Mapping of slave peripheral I/O devices into the processor’s address space is performed only from within the FPGA project,
using the Configure Peripheral dialog (Figure 13). Access this dialog by right-clicking on the symbol for the processor (in the
schematic) and choosing Configure Processor Peripheral from the context menu that appears. Alternatively, use the
Configure Processor Peripheral button available from the Component Properties dialog for the processor.

10 AP0149 (v2.0) February 27, 2008

Allocating Address Space in a 32-bit Processor

Configure Peripheral

Processor Architecture Defined Peripheral Devices
Thiz iz the processor's view of the peripheral devices

OxFFFF_FFFF

R b dd Processor 1/0 Space

10 Port

0xFFO0_0000 of the proceszor

OxFEFF_FFFF

External-Memory Space

0x0100_0000
Ox00FF_FFFF

Internal-Memory
‘where the
boot code resides

0x0000_0000

0x0000_0000

Mame Address Size Type Intermipts

Generate following files into the subproject(z] at FPGA Project compilation
[hardware. asm [Azsembly File) [hardware.h [C Header File)

’ Set to Default ” Impart From Schematic]’ LConfigure Memory] I ok H Lancel]

Figure 13. Mapping peripheral devices into processor memory address space

The dialog is divided into two regions. The top region provides a visual summary of the peripheral devices that are currently
defined and mapped into the processor's address space —i.e. the processor's 'view' of the actual peripherals in the design. The
bottom region of the dialog provides a tabular listing of each of these defined peripheral devices.

Controls are also provided in the dialog for generating header files (Assembly or C) upon compilation of the FPGA project.

The dialog also provides a Configure Memory button — allowing you to quickly jump between peripheral and memory

configuration dialogs. Note that when using this facility, you will be prompted to confirm whether you wish to save the
configuration of the current dialog before proceeding to the other dialog.

Importing Device Information from the FPGA Project Schematic

If you have connected your slave peripheral device(s) to the processor through a Wishbone Interconnect, then the simplest way
to make these devices 'known' to the processor — and automatically have them mapped into the processor's address space — is
to use the Configure Peripheral dialog's Import from Schematic feature.

Launched by clicking on the Import From Schematic button, the feature essentially
scans the FPGA design for configurable Wishbone Interconnect devices. All detected

Choose Wishbone ltems

interconnect devices, along with the slave devices associated to them, are presented Choose Wishbone ltems
in the Choose Wishbone Items dialog (Figure 14). ltem Impart to Bus
Prior to the dialog appearing, you will be given the choice of whether or not to delete = '—'_||ZZIZII'-I_||:|
any existing peripheral device definitions that have been added. If you have not yet PortlE Import
configured the processor I/O space, or want to start over again from a 'blank canvas' Partd Import

. . . . =-U_INTERCOM_MEM Do nat import
as it were, then opting to delete here is the best course of action. DB_SRAM Do not import
On the other hand, you may have already defined peripherals that you wish to keep. :gﬂiﬂﬁm gz:g: :;EE::
This can be the case when adding additional peripheral devices to an already well-
established design. In this case, it is better to not to delete the existing definitions, but - l [S
rather import just the addition(s). = =
Each slave peripheral device connected to an Interconnect is listed in the dialog, in Figure 14. Selecting peripheral devices to

terms of its identifier. This identifier is assigned as part of the slave device's definition import into processor address space.

when configuring the Interconnect. The dialog offers the ability to import selected
devices or all devices associated to a given Interconnect, by clicking on the relevant entry in the Import to Bus column. Choose
the peripheral devices you wish to import and click OK.

Importing will:

AP0149 (v2.0) February 27, 2008 11

Allocating Address Space in a 32-bit Processor

e Add peripheral device definitions where they currently do not exist. The identifier of an Interconnect slave device — defined

when configuring the Interconnect — will be used to name the peripheral device definition.

e Update any existing peripheral device definitions, only if the identifier of the Interconnect

slave device matches that of an existing peripheral device definition.

e Preserve exisiting peripheral device definitions whose identifiers do not match those of the
Interconnect slave devices being imported — leaving hand-crafted definitions untouched.

Only peripheral devices connected to the processor via a Wishbone Interconnect device will
* & be imported using the Import From Schematic feature. If a single peripheral device is

Update to/preservation of existing
peripheral definitions, will only be
possible where you have opted to
not delete the existing configuration
before importing.

connected directly to the processor's Peripheral 1/O interface, it will not be imported and mapped. In this case, you will need

to manually add a definition for the device.

Figure 15 illustrates an example of this mapping based on the example schematic circuitry of Figure 12.

Processor Architecture

OxFFFF_FFFF

OxFFFF_FFFF

OxFFOO_0000

Processor 1/0 Space
10 Part
of the processor

OxFEFF_FFFF

0x0100_0000

External-Memory Space

Ox00FF_FFFF

0x0000_0000

Internal-Memory
where the
boot code resides

0x0000_0000

Defined Peripheral Devices
Thiz iz the proceszor's view of the peripheral devices

OxFFFF_FFFF

OxFFz0_0003

Port8
U_INTERCOM_IO
0xFFZ0_0000
0xFF10_0003
Port16
U_INTERCON_IO

OxFF10_0000

OxFFOO_0003
Port32
U_INTERCON_IO
0xFFOO_0000

0x0000_0000

Mame Address Size Type Intermipts

Port32 OxFFO00000 00004 Peripheral

Port16 0«FF100000 00004 Peripheral

Portd O«FF 200000 00004 Peripheral

Generate following files into the subproject{z) at FPGA Project compilation

[hardware. asm [&szembly File) [hardware. b [C Header File)

’ Set to Default] ’ Import From Schematic] [LConfigure Memary] ’ Ok] | LCancel

Figure 15. Defining peripheral devices automatically by importing from the schematic.

If you do not wish to import any Interconnect-related devices, simply click on the Skip button (in the Choose Wishbone Items

dialog).

Managing Peripheral Device Definitions

New peripheral device definitions may be added, or existing ones modified or deleted, using the available commands on the
right-click menu for the Configure Peripheral dialog. An existing peripheral device can also be modified with respect to its
definition by double-clicking on its corresponding entry in the list section of the dialog, or by double-clicking on its 'block’ in the

graphical display. The associated Peripheral Device dialog will appear (Figure 16).

12

AP0149 (v2.0) February 27, 2008

The dialog enables you to accurately define the
peripheral device in terms of its size and base address —
specifying where in the processor's address space it is
to be mapped. You can specify these values using
decimal or Hex notation (e.g. 10000, 0x10000, 1k, 64k,
1M).

The Name field allows you to define a unique identifier
for the device. The identifier for each peripheral device
will be used when generating header files for inclusion
into the Embedded Software project (see next section).
It is important to note that the identifier used must not
contain spaces.

The Type region allows you to specify the type of

peripheral. Choose between the following options:

e Peripheral — standard peripheral device.

e Peripheral ASP — a peripheral whose functionality is
described in the Embedded Software project.

The Interrupts region of the dialog allows you to assign

the required interrupt lines to the slave device. For

devices that generate multiple interrupts, assignment is
made by entering a comma-separated list.

Allocating Address Space in a 32-bit Processor

Peripheral Device
I arne

Port32

When the FPGA project is compiled these
peripheral details will be pazsed ta the
embedded software project in the form of
peripheral h or periphera.asm.

The generated file will contain a definition for
the addresz and size of the perpheral. This
definition will have the zame name as the
peripheral device.

Mames cannot contain spaces.

Tupe

Chooge the kind of peripheral it is.

Either it iz a normal peripheral or an ASP
peripheral whose functionality iz
described in the embedded project.

The unique identifier of this perpheral device.

Peripheral w

Address Base
OxFFO00000

This is the proceszar's view of where the
peripheral device appears in the address
space.

The zize can be specified as a decimal ar hex

walue.
Ewxamples: 10000, 010000, 1k, B4k, 1h4

Size
0=0004

This represents the amount of memary that iz
allocated ta this peripheral device.

The size can be specified as a decimal ar hex
value.

Examples: 10000, 0x10000, 1k, G4k, 1k

Interrupts

Thiz represents the list of interrupts to be
azsigned to the device.
Enter as a comma delimited list.

Example: 1, 5,17

Figure 16. Defining a mapped peripheral I/O device.

Generating Header Files for the Embedded Software Project

When mapping slave memory and peripheral I/O devices to the processor’s address space from within
the FPGA project, the Configure Processor Memory and Configure Peripheral dialogs provide two
options for passing the memory and peripheral definition information to the Embedded Software project:

e hardware.asm (Assembly File)
e hardware_.h (C Header File)

The option you choose will depend on whether the embedded source code is written in Assembly or C.

Enabling or disabling an
option in one dialog will
automatically
enable/disable the
corresponding option in
the other dialog.

In each case, when the FPGA project is compiled, the chosen definition file will be created and added to the Embedded Project.

A header file essentially provides keyword substitution. The Embedded Software designer can simply enter a definition into the
code, which, through the header file, will be substituted with the required information at compile time. It is far easier to remember
and use identifiers for device addresses and sizes, rather than the hexadecimal representations themselves.
For each mapped memory and peripheral device, the file will contain the following definitions:
e The device's base address. The name for this entry will appear in the form Base_Deviceldentifier (e.g.

Base_ EMAC32).

e The device's size. The name for this entry will appear in the form Size_Deviceldentifier (e.g.
Size_EMAC32).

For those peripheral devices that generate interrupts to the processor, the corresponding interrupt
definitions will also be listed. The name for an interrupt entry will be of the form:

Deviceldentifieris
the unique name
assigned to the memory
or peripheral device as
part of its definition when

Intr_Deviceldentifier_Interruptindex mapping.

where InterruptlIndex is an alpha suffix (A, B, C, etc) to distinguish between multiple interrupts from
the same device. Consider for example a BT656 Video Capture Controller, with the identifier Video, and which generates two
interrupts to the host 32-bit processor. The interrupt name entries for this device in a generated header file would be:

Intr_Video_ A
Intr_Video_B

Figure 17 shows an example of two generated header files — one C, the other Assembly.

AP0149 (v2.0) February 27, 2008 13

Allocating Address Space in a 32-bit Processor

[]] hardware h 1 bk dvvare asm 2
e e e e i arei e saeaeasaseraaian ey e e AR R R e R R R R RS AR R R s R e R e
AF Automatically generated header file. p Automatically germerated header file.

A4 Generated: 10:47:45 M 11707720068 ; Generated: 10:47:45 DM 1370772006

S This file should not be edited. ; This file should not be edited.

fi00GL #00at

#ifndef HARDWARE H e e e e e e,

#define HARDWARE H Ease LEDS . equ OxFFO00000
Size_LED3 .equ O0x00000001

££i00GL #00at

#define Base_ LED3 OxFFO00000

#define 3ize LED3 Q00000001 #00at

fi00G: Basze_35RLO .equ OxFF300000
Fize_ZRLO .equ O0x00000010

FonoOooooonooooooooOOoOO0oon000a00000000000000000aL Intr_ZRLO_A .equ 2

#define Base_ SRL0O OxFF300000 HoonoooooooooOOOODDo000000000000000000000a000000!

#define 3ize_ SRLO Q00000010

#define Intr SRLO_A 2 HoonoooooooooOOOODDo000000000000000000000a000000!

fi00G: Base EMAC3Z .equ OxFFlO0000
Size_EMAC3Z .equ O0x00000020

FonoooooonooooooooOOOoOO0ooa000a00000000000000000aL Intr_EMAC3IZ A& equ 0

#define Base EMAC3IZ OxFF100000 HoonoooooooooOOOODDo000000000000000000000a000000!

#define Size EMACSZ Q00000020

#define Intr EMACIZ_A a 4//00

fi00G: #define INTERRUPT CONTROL CF& dxfa0a80a8s
#define INTERRUPT KINDS CFG dxdaoaanan

fi00G: #define INTERRUPT EDSE KIND CF& dxdaoaanan

#define INTERRUPT CONTEOL_CFG Ox00000005 #define INTERRUPT LVL KIND CFG dxfa0a80a8s

#define INTERRUPT EINDS CFG Ox00000000 4//00

#define INTERRUPT EDGE_KIND_CFG Ox00000000

#define INTERRUPT_LVL_KIND CFG Ox00000005 #00at

fi00G: Baze_U_MCTUL . ecu Ox00000000
Size_U_MCUL .eu O0x00003000

fi00G: #00at

#define Base U_MCUL Q00000000

#define Size U_MCUL Q00003000 #00at

0000000000000 000a0ca000a00000 0000080000000 0anaat Base_EXT_FAM Lequ 001000000
Size_EXT_EAM .equ Ox00100000

fi00G: #00at

#define Base EXT_RAM Ox01000000

#define Size EXT_RAM Q00100000

e et e i arei e saeaeasaaaraa e e

#endif ¢/ HARDWARE H
< LS b

Figure 17. Example of generated hardware definition files for use by the embedded software.

Revision History

Date Version No. Revision
14-Jul-2006 1.0 Initial release
27-Feb-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:
Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

14 AP0149 (v2.0) February 27, 2008

	Address Space Mapping - Overview
	A Word on Mapping Physical Memory...

	Mapping Physical Memory from within the FPGA Project
	Importing Device Information from the FPGA Project Schematic
	 Managing Memory Device Definitions

	 Mapping Physical Memory from within the Embedded Project
	Sections and Reserved Areas
	Sections
	Reserved Areas

	 Configuring Processor Peripheral I/O
	Importing Device Information from the FPGA Project Schematic
	Managing Peripheral Device Definitions

	Generating Header Files for the Embedded Software Project
	Revision History

