

Capturing Video the Easy Way
Programming FPGAs for flexible, quick applications development

Summary
Tutorial
TU0131 (v2.0) March 20, 2008

This tutorial is based on the TRAININGcenter Video of the same title and provides a
step by step overview of how to create a reasonably sophisticated FPGA design. It
outlines how to create a design using OpenBus, Constraining the Design to a target
device, developing embedded software using DSF, and running the entire design on a
Desktop NanoBoard.

FPGAs have been around for over 20 years but for many designers they are still a ‘new thing’. Coming to grips with the
technology and their capabilities can sometimes feel like a daunting task but regardless of your current skill levels, this tutorial
will walk you through the process of creating a reasonably sophisticated FPGA design from start to finish. In doing so, you’ll be
provided with an overview of several of the features of Altium Designer that have been specifically developed to increase
productivity and to make the design process easier. These include:

• OpenBus system development

• Autoconfiguration of FPGA projects

• Device Software Framework

You’ll also be shown how to interact with some of the advanced Desktop NanoBoard peripherals such as:

• Composite video capture

• Touchscreen TFT display

What you’ll be creating
This tutorial is based around a video capture and display application.

Figure 1. Overview of the Video capture system

What you’ll need
In order to complete this tutorial, you’ll need:

• Altium Designer 6.8 (or later) installed

• A Desktop NanoBoard with PB01 peripheral board and DB30 Spartan3 daughter board (or similar) installed.

• A composite video source from a camera or DVD player.

• Vendor build tools. The free version of Xilinx’s ISE (8.2.03i or later) will be sufficient if you are using the DB30 daughter
board.

TU0131 (v2.0) March 20, 2008 1

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Creating the FPGA Project
To start working with Altium Designer, you first need a project. A project makes managing your source design documents and
any generated outputs much easier. For FPGA designs, you’ll need an FPGA project.

To create a new FPGA project:
1. Select File » New » Project » FPGA Project from the menus, or click on Blank Project (FPGA) in

the New section of the Files panel. Warning: Do not use
spaces or dashes (‘-‘) in file
or project names. Use
underscores if necessary.

2. The Projects panel will display a new FPGA project with the default name
FPGA_Project1.PrjFpg. Select File » Save Project or right-click the project in the Projects
panel and select the Save Project item. Save the file as SpinningVideo.PrjFpg.

To avoid problems that some of the FPGA build tools have with spaces (‘ ‘) in filenames, use underscores (‘_’) instead of
spaces.

Adding source documents to the FPGA Project
An FPGA project supports three types of source documents – Schematic, HDL (Verilog or VHDL) and OpenBus. You can use a
mixture of all three document types in a project with the use of sheet symbols. However, for FPGA projects, you must have a
schematic as the top level document. This is necessary for supporting FPGA-to-PCB integration and synchronization.

To create a single schematic document and add it to the project:
1. Select File » New » Schematic, or click on Schematic Sheet in the New section of the Files panel. A blank schematic

sheet named Sheet1.SchDoc displays in the design window

2. Rename the new schematic file (with a .SchDoc extension) by selecting File » Save As. Navigate to the same folder as
your project and type the name SpinningVideo_FPGA.SchDoc and click on Save.

We’ll come back to this document shortly but for now, we need to also
create a new OpenBus document and add that to the project as well.

Figure 2. Projects Panel with FPGA project and newly
created documents

To create a single OpenBus document and add it to the project:
1. Select File » New » Other » OpenBus System Document, or click

on OpenBus System Document in the New section of the Files
panel. A blank OpenBus document named System1.OpenBus
displays in the design window

2. Rename the new OpenBus document (with an .OpenBus
extension) by selecting File » Save As. Navigate to the same
folder as your project and type the name
SpinningVideo_OB.OpenBus and click on Save.

Defining an FPGA system using OpenBus
OpenBus is a new way of doing system-level FPGA design. It offers a much
lighter interface than schematic based implementations but without becoming
lightweight in its capabilities. By automatically taking care of much of the low-
level detail, it lets you focus on the high-level system and interconnection of
major components. You’ll find all of the components you need in the OpenBus
Palette panel. You can display the panel by clicking on the OpenBus panel
control in the lower right portion of the main editor and then selecting the
OpenBus Palette item from the popup menu. Figure 3. Accessing the OpenBus Panels

Placing OpenBus Components
The OpenBus Palette panel contains all OpenBus components that can be used in an OpenBus document. They have been
categorized in the palette into groups of Connectors, Processors, Memories and Peripherals. The subsections can be
expanded or collapsed using the or icons respectively.

For this tutorial, we’ll be using the following components:

2 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Group Item Icon

Connectors Arbiter

Connectors Interconnect

Processors TSK3000A

Memories SRAM Controller

Peripherals Port IO

Peripherals Video Capture Controller

Peripherals VGA 32-Bit TFT Controller

Peripherals I2CM Controller

Figure 4. OpenBus components required for this tutorial

To place an OpenBus component onto an OpenBus Document:
1. Select the OpenBus Component that you want to place by left-clicking on its icon once in the OpenBus Palette panel.

2. The component will be locked to the mouse cursor. At this point you can use the Spacebar to rotate the component or the X
or Y keys to flip the component along the X or Y axis respectively.

3. Move the mouse to where you want the component placed and left-click the mouse once again to place it. The cursor will
remain in placement mode so that you can continue to place several more instances of the same components if required.

4. Press the Esc key or right-click the mouse to exit the placement mode.

5. Continue placing the components indicated in Figure 4 as per the OpenBus diagram of Figure 5.

To edit the names of the OpenBus components that you have placed:

1. Click once on the text associated with the OpenBus component that you want to rename. This selects the text.
2. Click a second time on the text or press the F2 key to enter the edit text mode.

3. Edit the text as desired.
4. Press the Enter key or click on something else in the editor window to leave the editing mode and keep your changes.

TU0131 (v2.0) March 20, 2008 3

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Connecting OpenBus Components
In order to control the flow of data between the components on your OpenBus document, you will need to place connection links

between them. These links indicate bus connections between master ports and slave ports . The arrow on the
connection link indicates the direction of control.

To place a connection link between a master and slave port:
1. Select Tools » Link OpenBus Ports or click on the Link OpenBus Devices icon in the OpenBus

toolbar.

2. Click the master port that you want to create the link from

3. Click on the slave port that you want to be controlled.

4. Repeat steps 2 & 3 for any additional links that you wish to create. To exit link placement mode,
hit the Esc key or right-click the mouse.

To remove a connection link between a master and slave port:
1. Select Tools » Remove OpenBus Link or click on the Remove OpenBus Link icon in the

OpenBus toolbar.

2. Hover the mouse over the link that you wish to remove until it changes color. Click the left-
mouse button to execute the link removal.

3. Repeat step 2 for any additional links that you wish to remove. To exit the link removal mode,
hit the Esc key or right-click the mouse.

Interconnect and Arbiter Components
Because connection links can only be made between a single master and a single slave, OpenBus
Interconnect and Arbiter components are required to allow you to connect multiple components
together.

Interconnect

OpenBus Interconnect components have a single slave port and one or more
master ports. This allows a master device (connected to the OpenBus
Interconnect’s slave port) to control multiple other slave devices (connected to the
OpenBus Interconnect’s master ports).

Arbiter

OpenBus Arbiters are the complement to Interconnect Components. They allow multiple master
components to control a single device such as when you need to connect multiple master components to
a single block of memory. The Arbiter component is responsible for coordinating accesses between th
competing masters. You can control how it performs its arbitration by right-clicking the component and

accessing its configuration options.

01

e

To add an additional port to an OpenBus Interconnect or Arbiter component:
1. Select Tools » Add OpenBus Port or click on the Add OpenBus Port icon in the OpenBus

toolbar.

2. Hover the mouse over an existing port on the component you wish to add a new port to. A red
line will appear indicating where the port will be added.

3. Click to add the new port.
4. Repeat steps 2 & 3 for any additional ports that you wish to create. To exit the port placement mode hit the Esc key or right-

click the mouse.

To remove a port from an OpenBus Interconnect or Arbiter component:
1. Select Tools » Remove OpenBus Port or click on the Remove OpenBus bus port icon in the

OpenBus toolbar.

2. Hover the mouse over the port that you wish to remove until a red cross appears. Click the left-
mouse button to execute the port removal.

3. Repeat step 2 for any additional ports that you wish to remove. To exit the port removal mode,
hit the Esc key or right-click the mouse.

4 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

To change the position of ports on an OpenBus Interconnect or Arbiter component:
1. Select Tools » Reorder OpenBus Ports or click on the Reorder OpenBus ports icon in

the OpenBus toolbar.

2. Hover the mouse over the port that you wish to move until a red circle is drawn around it.
Click the left-mouse button to begin the move.

3. Move the mouse cursor over another port on the component. A red line will appear at the
location where the port will be moved to. Left click the mouse to execute the move.

4. Repeat steps 2 & 3 for any additional ports that you wish to move. To exit the port reorder mode, hit the Esc key or right-
click the mouse.

Completing the OpenBus System
1. Complete the creation of the OpenBus system using the techniques outlined above. The completed OpenBus system can

be seen in Figure 5.

2. Save your work.

Figure 5. Completed OpenBus design for this tutorial

TU0131 (v2.0) March 20, 2008 5

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Configuring OpenBus Components
The vast majority of components found in the OpenBus Palette translate directly to similarly named components found within
the FPGA Peripherals and FPGA Processor libraries used for schematic-based FPGA design. In the same way that several of
the components in the schematic-based libraries are configurable, so too are their OpenBus counterparts. In this tutorial, we
are using several configurable components that will need to be adjusted.

Configure Peripheral Components

Figure 6. Configuring the IO Port peripheral

To configure the Port I/O component for this tutorial:

1. Right-click the WB_PRTIO_1 component and select the
Configure WB_PORTIO_1 (Port IO) … item.

2. In the Configure OpenBus Port I/O dialog box:
- Set the port Kind to Output.
- Set the Port Count to 1.

- Set the Bus Width to 8.

3. Click OK to save the changes.

Configure Memory Controllers
To Configure the Video Capture Memory component:
1. Right-click the CaptureMem component and select the Configure CaptureMem (SRAM Controller) … item.

2. In the Configure (Memory Controller) dialog box:
- Set the Memory Type to Asynchronous SRAM.

- Set the Size of Static RAM array to 1 MB (256K x 32-bit).
- Set the Memory Layout to 1 x 32-bit Wide Device.

3. Click OK to save your changes.

To configure the Video Display Memory component:
1. Right-click the DisplayMem component and select the Configure DisplayMem (SRAM Controller) … item.

2. In the Configure (Memory Controller) dialog box:
- Set the Memory Type to Asynchronous SRAM.

- Set the Size of Static RAM array to 1 MB (256K x 32-bit).
- Set the Memory Layout to 2 x 16-bit Wide Devices.

3. Click OK to save your changes.

Configure Memory Arbiters

Figure 7. Configuring an Arbiter component

To configure the Capture Memory Arbiter component:

1. Right-click the CaptureMem_Arbiter component and select
the Configure CaptureMem_Arbiter (Arbiter) … item.

2. In the Configure OpenBus Arbiter dialog box:
- Set the Type to Priority.

- Set the Master With No Delay to be same slave port
as the VideoCapture component is connected to (S1).

3. Click OK to save your changes.

To configure the Display Memory Arbiter component:

1. Right-click the DisplayMem_Arbiter component and select
the Configure DisplayMem_Arbiter (Arbiter) … item.

2. In the Configure OpenBus Arbiter dialog box:
- Set the Type to Priority.

- Set the Master With No Delay to be same slave port as the VideoDisplay component is connected to (S1).

3. Click OK to save your changes.

6 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Configure the Processor
To configure the TSK3000 processor component:
1. Right-click the TSK3000 component and select Configure TSK3000A_1 (TSK3000) …

2. In the Configure (32-bit Processors) dialog box:
- Confirm that the processor listed in the drop down box in the upper right is TSK3000.

- Set the Internal Processor Memory to 8 K Bytes (2K x 32-Bit Words).
- Set the Multiply/Divide Unit (MDU) to Hardware MDU.

- Set the On-Chip Debug System to Include JTAG-Based On-Chip Debug System and Disable Breakpoints on Hard
Reset.

3. Click OK to save your settings and close the dialog box.

Managing the Memory Map
One of the key benefits of developing your design with OpenBus is the level of automation that OpenBus brings to the
management of the system memory map. Ultimately all peripherals and memory devices sit within a 32-bit memory space that
spans 4GBytes. To make the management of this memory space easier, OpenBus intelligently interprets the design and
automatically allocates memory spaces for each of the peripherals and memory controllers. In most situations these memory
allocations will be sufficient but in some rare cases you may wish to manually edit the memory allocations yourself. You can still
do this with OpenBus.

Configuring Memory using Interconnect Components
Under normal circumstances, the interconnect component will probe the settings and memory requirements of each of its
connected devices and will update the memory map automatically. You can see (and edit) the memory mapping of the
interconnect component from the Configure OpenBus Interconnect dialog which can be accessed from the component’s right-
click menu.

Figure 8. Viewing (and editing) the interconnect memory map

The Interconnect configuration information is automatically propagated to the memory map of the processor.

TU0131 (v2.0) March 20, 2008 7

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Configuring Memory from within the Processor
In addition to the memory that is managed by each of the interconnect
components within the OpenBus document, you can also centrally
manage memory from the Processor’s memory and peripheral
configuration dialog boxes. These can be accessed by right-clicking the
processor.

Figure 9. Configuring the processor memory

The Configure Processor Memory dialog box provides a pictorial
representation of where the peripherals and memory controllers will be
positioned within the processor’s memory. You can manually control the
memory map using the grid control at the bottom of the dialog but this is
usually unnecessary. A far simpler option is to check the Automatically
import when compiling checkbox. This will ensure that all OpenBus memory settings are incorporated and synchronized in
the design each time it is compiled.
Checking the hardware.h (C Header File) option will cause a hardware.h header file to be created when the project is
compiled. This header file will be automatically added to any linked embedded projects and will provide macros that define
where each of the peripherals and memory devices sit within memory. By ensuring these two checkboxes are checked, any
changes you make to the OpenBus document will be propagated through to the embedded project as well.

Figure 10. Controlling how memory configuration information is propagated throughout the design.

To set the project to automatically import the settings from the OpenBus document:
1. Right-click the TSK3000 processor and select Configure Processor Memory …

2. In the Configure Processor Memory dialog box, check the hardware.h checkbox.

3. Check the Automatically import when compiling checkbox also.

4. Click the Configure Peripherals button to change views. If asked if you want to save the configuration before moving to
configuring the peripherals, click Yes.

5. Check the Automatically import when compiling checkbox to import the peripheral memory map when the project is
compiled.

6. Click OK to exit.

8 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Linking the OpenBus Document to its Parent Schematic
As mentioned right back at the beginning of this tutorial, the top level document in an FPGA project needs to be a schematic.
Now that we have created an OpenBus document, we must now link that document back to the top level schematic sheet that
we created earlier on.

Before linking the documents, it’s worth taking just a moment to explain how the underlying signals in the OpenBus document
get exposed to the top level schematic. All of the signals used for the bus interconnects (links) will generally remain hidden
within the OpenBus document but there are many other signals that are not immediately visible on the OpenBus document that
will need to be exposed. To see a list of these signals you’ll need to use the OpenBus Signal Manager.

Using the OpenBus Signal Manager
The OpenBus Signal Manager can be accessed from the Tools menu and it allows you to take finer control over which signals
are to be exposed externally to the OpenBus document. A picture of this dialog is given in Figure 11.
The Clocks and Resets tabs will rarely need your attention as the default settings for these are usually adequate. The
Interrupts tab will need your attention if you are planning on using any peripherals as interrupt sources. From this dialog you
can allocate interrupts to the available interrupt channels on the main processor. In this design, interrupts won’t be needed and
so we can leave things in the default (unconnected) state.
The list of signals in the External connection summary can not be edited directly however this dialog serves as an excellent
reference. All of the signals listed in this dialog will be exported to the parent schematic. The signals are grouped according to
the component that controls them which makes it much easier to identify and locate the source of the different signals. For
instance, when you link an OpenBus document to a parent schematic, it may not be immediately apparent where certain signals
on the sheet symbol have come from. It is in this dialog box that you will find your answers.

Figure 11. Using the OpenBus Signal Manager to identify the source of OpenBus signals.

Creating a sheet symbol from the OpenBus Document
To link the OpenBus document to a parent schematic, you need to create a sheet symbol from the OpenBus document and
place it on the parent schematic.

1. Open SpinningVideo_FPGA.SchDoc
2. Select Design >> Create sheet symbol from sheet or HDL.
3. When the Choose Document to Place dialog box appears, select the SpinningVideo_OB.OpenBus document and click

OK.

4. A large sheet symbol will be attached to the cursor. Position it where you want to place it on the schematic page and click
once to commit the placement.

TU0131 (v2.0) March 20, 2008 9

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

U_SpinningVideo_OB
SpinningVideo_OB.OpenBus

RST_I
CLK_I

WB_PRTIO_1_PAO[7..0]

VideoCapture_pclk
VideoCapture_vblk
VideoCapture_vid_data[7..0]

VideoDisplay_TFT_CL[3..1]
VideoDisplay_TFT_DISP_ON

VideoDisplay_TFT_M
VideoDisplay_TFT_POL
VideoDisplay_TFT_STH
VideoDisplay_TFT_STV

VideoDisplay_TFT_RED[4..0]
VideoDisplay_TFT_GREEN[5..0]

VideoDisplay_TFT_BLUE[4..0]

CaptureMem_SRAM_D[31..0]

CaptureMem_SRAM_A[17..0]
CaptureMem_SRAM_CE

CaptureMem_SRAM_WE
CaptureMem_SRAM_OE

CaptureMem_SRAM_B3_E
CaptureMem_SRAM_B2_E
CaptureMem_SRAM_B1_E
CaptureMem_SRAM_B0_E

DisplayMem_SRAM0_D[15..0]

DisplayMem_SRAM0_A[17..0]
DisplayMem_SRAM0_CE

DisplayMem_SRAM0_WE
DisplayMem_SRAM0_OE
DisplayMem_SRAM0_UB
DisplayMem_SRAM0_LB

DisplayMem_SRAM1_D[15..0]

DisplayMem_SRAM1_A[17..0]
DisplayMem_SRAM1_CE

DisplayMem_SRAM1_WE
DisplayMem_SRAM1_OE
DisplayMem_SRAM1_UB
DisplayMem_SRAM1_LB

I2CM_W_1_SDATAO
I2CM_W_1_SCLK_EN

I2CM_W_1_SCLKI
I2CM_W_1_SDATAI

I2CM_W_1_SDATA_EN
I2CM_W_1_SCLKO

Figure 12. Creating a sheet symbol from an OpenBus document

The sheet entries on the newly placed sheet symbol have been loosely grouped with inputs on the left and outputs on the right.
You must now go through a process of unraveling all of these sheet entries so that you can connect them to the port plugins on
the NanoBoard more easily.

Wiring up the Top Level Schematic
To line the sheet entries up with the port plugins and to complete the top level schematic, you’ll need to place a number of
components. You’ll find these libraries in the Libraries\FPGA folder of your Altium Designer installation.

1. From the FPGA NB2DSK01 Port-Plugin.IntLib:

- CLOCK_BOARD

- LED

- NEXUS_JTAG_CONNECTOR

- SHARED_MEM_DAUGHTER

- SRAM_DAUGHTER0

- SRAM_DAUGHTER1

- TEST_BUTTON

- TFT_LCD
2. From the FPGA Peripheral Board 01 Port-Plugin.IntLib:

- VIDEO_INPUT

- VIDEO_INPUT_CTRL
3. From the FPGA Generic.IntLib:

- INV

- IOBUF (x2)

- J4S_4B

- NEXUS_JTAG_PORT

10 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

4. A completed version of the SpinningVideo_FPGA.SchDoc schematic is given in Figure 13. Use this as a guide to position
the port plugin components around the sheet symbol and then reorder the sheet entries so that they will line up nicely with
them.

5. Once you have completed wiring up the schematic, select Tools » Annotate Schematics Quietly… to annotate the design
by giving each component a unique designator.

6. Compile the design by selecting Project » Compile FPGA Project SpinningVideo.PrjFpg. Fix any compilation or wiring
errors as necessary and save your work.

U_SpinningVideo_OB
SpinningVideo_OB.OpenBus

RST_I

CLK_I

WB_PRTIO_1_PAO[7..0]

VideoCapture_pclk
VideoCapture_vblk

VideoCapture_vid_data[7..0]

VideoDisplay_TFT_CL[3..1]
VideoDisplay_TFT_DISP_ON
VideoDisplay_TFT_M
VideoDisplay_TFT_POL
VideoDisplay_TFT_STH
VideoDisplay_TFT_STV

VideoDisplay_TFT_RED[4..0]
VideoDisplay_TFT_GREEN[5..0]
VideoDisplay_TFT_BLUE[4..0]

CaptureMem_SRAM_D[31..0]
CaptureMem_SRAM_A[17..0]

CaptureMem_SRAM_CE

CaptureMem_SRAM_WE
CaptureMem_SRAM_OE

CaptureMem_SRAM_B3_E
CaptureMem_SRAM_B2_E
CaptureMem_SRAM_B1_E
CaptureMem_SRAM_B0_E

DisplayMem_SRAM0_D[15..0]
DisplayMem_SRAM0_A[17..0]

DisplayMem_SRAM0_CE
DisplayMem_SRAM0_WE
DisplayMem_SRAM0_OE
DisplayMem_SRAM0_UB
DisplayMem_SRAM0_LB

DisplayMem_SRAM1_D[15..0]
DisplayMem_SRAM1_A[17..0]

DisplayMem_SRAM1_CE
DisplayMem_SRAM1_WE
DisplayMem_SRAM1_OE
DisplayMem_SRAM1_UB
DisplayMem_SRAM1_LB

I2CM_W_1_SDATAO

I2CM_W_1_SCLK_EN

I2CM_W_1_SCLKI

I2CM_W_1_SDATAI

I2CM_W_1_SDATA_EN

I2CM_W_1_SCLKO

CLK_BRD

LEDS[7..0]

TEST_BUTTON

DAU_TFT_M
DAU_TFT_POL
DAU_TFT_STH
DAU_TFT_STV

DAU_TFT_DISP_ON

DAU_TFT_BLIGHT
DAU_TFT_MUX

DAU_TFT_RED[4..0]
DAU_TFT_GREEN[5..0]

DAU_TFT_BLUE[4..0]
DAU_TFT_CL[3..1]

DAU_TFT_IRQ

BUS_D[31..0]

BUS_SDRAM_CLK

BUS_NWE
BUS_NOE
BUS_NBE[3..0]

BUS_A[24..1]

BUS_RAM_NCS

BUS_FLASH_NBUSY

BUS_SDRAM_CKE
BUS_SDRAM_NRAS
BUS_SDRAM_NCAS
BUS_SDRAM_NCS

BUS_FLASH_NRESET
BUS_FLASH_NCS

SPANSION
S29GL256N

11FFIV1

U1 (U1)

INV
MT48LC16

M16A2
BG-7E

SAMSUNG
K6R4016V1D-TC10

SRAM0_E
SRAM0_A[17..0]

SRAM0_W
SRAM0_OE
SRAM0_UB

SA
M

SU
N

G
K

6R
40

16
V

1D
-T

C
10SRAM0_D[15..0]

SRAM0_LB

SRAM1_E
SRAM1_A[17..0]

SRAM1_W
SRAM1_OE
SRAM1_UB

SA
M

SU
N

G
K

6R
40

16
V

1D
-T

C
10SRAM1_D[15..0]

SRAM1_LB

VIDIN_DATA[7..0]
VIDIN_PCLK

VIDIN_INTERQ_GPLC
VIDIN_RESETBTVP5150AM1 VIDIN_AVID
VIDIN_HSYNC
VIDIN_VSYNC

VIDIN_FID_CLCO

SDA
SCL

TVP5150AM1 U4 (U4)

IOBUF

U3 (U3)

IOBUF

TCK
TMS

TDI
TDO

TRST

JTAG

.

JTAG

JTAG

JTAG

JTAG

JTAG
..

JTAG_NEXUS_TMS
JTAG_NEXUS_TCK
JTAG_NEXUS_TDO
JTAG_NEXUS_TDI

VCC

I0
I1
I2

O[3..0]

U2 (U2)

J4S_4B
I3

[17..0] [19..2] SH_MEM_A[24..1]

GND

GND SH_MEM_A[24..20]

SH_MEM_A1

VCC
VCC
VCC
VCC

VCC
VCC

VCC

RST_InRST_I

nRST_I

VCC

Figure 13. The Completed top-level schematicConstraining the Design

At this point we have completed the bulk of the FPGA design but there is one additional step that we need to go through before
we can run it on the Desktop NanoBoard. Constraining an FPGA design is the process of defining the specific FPGA pins that
you want each of the signals in your design to appear on. This is an important step as it will ensure that the FPGA design is
able to interact with NanoBoard resources that have been hardwired to the FPGA daughter board.

When defining constraints, it is possible to hardcode them into the top-level schematic sheet but this is not advisable. The
reason for this is because it binds the design to a specific device and limits your ability to retarget a different FPGA should the
need arise. A much better approach is to store constraint information in a separate location to the schematic. Altium Designer
implements this approach using a set of pre-built and user-definable constraint files which can be added to the FPGA project.

Auto-configuring projects running on the Desktop NanoBoard

Figure 14. Creating a configuration automatically

In order to make the process of targeting your design to the Desktop NanoBoard, Altium Designer includes a handy
autoconfiguration feature. By utilizing some smarts that have been built into the NanoBoard’s firmware, Altium Designer is able
to probe the Desktop NanoBoard and determine exactly what daughter and peripheral boards are connected. A set of pre-
defined constraint files will then be loaded and grouped together into a configuration that targets your specific hardware setup.

TU0131 (v2.0) March 20, 2008 11

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Figure 15. Example of a configuration created from the Autoconfigure utility

To auto-configure your FPGA design to run on a Desktop NanoBoard:

1. Make sure your Desktop NanoBoard is connected to your PC
and powered on.

Figure 16. Constraint files that have been added to the project
by the autoconfigure utility.

2. Select View » Devices View or click on the Devices View icon
 in the toolbar.

3. In the Devices View, ensure that the Live checkbox is checked.
You should see a picture of the Desktop NanoBoard in the upper
region of the display.

4. Right-click the Desktop NanoBoard icon and select Configure
FPGA Project » SpinningVideo.PrjFpg.

5. Altium Designer will take just a few moments to probe the
Desktop NanoBoard and create a new configuration. Click OK
to accept the new configuration.

You may notice that a new Settings folder has been added to the
project. In this folder you will find a Constraint Files folder with all
of the newly added constraint files.

Several of the files will have a ‘shortcut’ symbol. Altium
Designer uses this notation to indicate files which are not stored in
the main project folder. These particular files are all pre-defined
constraint files that are shipped with Altium Designer. They are specific to the various peripheral and daughter boards that they
represent and should NOT be edited as changes made to these files will affect all other projects that you build for the Desktop
NanoBoard.

The constraint file that has been highlighted in Figure 16 was automatically created by the auto-configure process and is stored
with the project. This file defines where the peripheral boards are located on the Desktop NanoBoard.

The auto-configuration process deals with the mapping of ports defined on the top-level FPGA schematic and their target FPGA
pins. There are, however, additional constraints (such as the clock frequency) that are important for the design but which can
not be handled automatically. In order to capture this information, it is best to create another constraint file that is reserved for
this information and add it to the configuration.

To create a new constraint file and add it to the configuration:
1. Right-click the SpinningVideo.PrjFpg project in the Projects panel and select Add New to Project » Constraint File.

2. Select File » Save As … to save the file. Give it a meaningful name such as MyConstraints.Constraint and click OK.

3. Right-click the SpinningVideo.PrjFpg project in the Projects panel and select Configuration Manager … .
4. Locate MyConstraints.Constraint in the Constraint Files columns and check the box in the Configurations column

to add it to the existing configuration.
5. Click OK to close the Configuration Manager and save your changes.

12 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Figure 17. Adding your own constraint file to the configuration

To add a clock constraint to the CLK_BRD signal:
1. Open MyConstraints.Constraint.

2. Select Design » Add/Modify Constraint … » Port … .
3. In the Add/Modify Port Constraint dialog:

- Set the Target to CLK_BRD

- Set the Constraint Kind to FPGA_CLOCK_FREQUENCY

- Set the Constraint Value to 50MHz.

4. Click OK to close the Add/Modify Port Constraint dialog.
5. Observe that a new constraint record has been added to MyConstraints.Constraint. Save your work.

Record=Constraint | TargetKind=Port | TargetId=CLK_BRD | FPGA_CLOCK_FREQUENCY=50MHz

Figure 18. A clock frequency constraint

Building the FPGA design
Once the FPGA design has been defined along with its constraints, you are now ready to build it. Building an FPGA design is
the process of compiling and synthesizing your entire FPGA design into a configuration bit file that can be downloaded and run
from the target FPGA device. Altium Designer standardizes the way you build an FPGA design so that it is vendor independent.
You’ll recall that a copy of the Vendor tools for the specific device you are targeting was listed in the “What you’ll need” section
of this tutorial. Altium Designer needs these vendor tools in order to place and route the design but the interaction with these
back end tools will be largely transparent to the user.

To build an FPGA design:

1. Make sure your Desktop NanoBoard is connected to your PC and powered up.

2. Select View » Devices View or click on the Devices View icon in the toolbar.

3. Ensure that the Live checkbox is checked. You should see a picture of the Desktop NanoBoard in the upper region of the
display and an icon of the Spartan3 FPGA in the middle region.

4. In the drop down list just below the Spartan3 icon, ensure that the SpinningVideo / NBD2DSK01_07_DB30_04 project /
configuration pair is selected.

5. Locate the Compile, Synthesize, Build, Program FPGA buttons running left to right just below the Desktop NanoBoard
icon. As this is the first time you have built your design, the colored indicators on each of the buttons will appear RED. Click
once on the words Program FPGA to begin the build process.

6. As the build process progresses, the colored indicator from each stage will turn yellow while it is processing and then green
when completed successfully. The process of building the design may take several minutes to complete. You can observe
the progress of the build from the Messages and Output panels which can be accessed from the System panel tab in the
lower right section of the Altium Designer workspace.

TU0131 (v2.0) March 20, 2008 13

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Figure 19. Running the FPGA build flow

1. If any errors occur you will need to rectify them before you can proceed. Try to locate the source of the error by retracing
your steps through the instructions of the tutorial.

2. A summary dialog will be displayed once the design has been built and downloaded successfully. Click OK
to close this dialog.

Once the FPGA design has been downloaded to the Desktop NanoBoard, you should notice that the status of
the TSK3000 processor has changed from Missing to Running.

We can now begin work on the embedded code that this processor will run.

Developing the Embedded Code
Altium Designer uses an Embedded Project as the container for all of the code that is to execute on a given target.

To create a new Embedded Project:
1. Select File » New » Project » Embedded Project from the menus, or click on Blank Project (Embedded) in the New

section of the Files panel.
2. The Projects panel will display a new Embedded project with the default name Embedded_Project1.PrjEmb. Select

File » Save Project or right-click the project in the Projects panel and select the Save Project item. Save the file as
VideoSpin.PrjEmb. If you want to keep your Embedded project documents separate from your FPGA project documents,
you may wish to save the Embedded Project in a subfolder called Embedded under your FPGA project folder.

Adding the source code to the Embedded Project
When a new embedded project is first created, it will be created as an empty container. You must then add or create the
relevant source files to the project. Altium Designer can compile C source files, C header files, or Assembly files as part of your
project.

To create a new C file and add it to the project:

14 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

1. Select File » New » C Source Document, or right-click the embedded project in the Projects panel and select Add New to
Project » C File. A blank text document named Source1.C will be added to the Embedded Project and displayed in the
main editor window.

2. Rename the newly created file (with a .C extension) by selecting File » Save As. Navigate to the same folder as your
embedded project and type the name Main.C and click on Save.

Linking an Embedded Project to its Target Processor
An Embedded Project can be developed in isolation but pretty soon you’re going to want to run it on a target processor. Altium
Designer gives you the ability to link your embedded project to an FPGA project containing an embedded processor.

To link an Embedded Project it is target processor:

1. Make sure both the Embedded Project and the FPGA Project that
contains the target processor are both loaded in the Projects panel.

Figure 20. Linking an Embedded Project to a
processor

2. Select the Structure Editor mode in the Projects panel.

3. Left-click and drag the Embedded Project over the top of the FPGA
project. Any valid processor targets will be highlighted in light blue. Drop
the project on the TSK3000A_1 processor.

4. Switch the Projects panel back to File View. Observe that the hierarchy
of the projects have been updated placing VideoSpin.PrjEmb as a
child of SpinningVideo.PrjFpg.

After you’ve linked projects, you may also notice that a new C header file
has been added to the Embedded Project. This file, hardware.h, was
created by the FPGA project when it was compiled and, according to the options that were set in Figure 10, has been added to
the linked embedded project.

Writing some C Source Code
Now that our Embedded Project has been linked to a hardware platform that it can execute from, we are ready to start writing
some C code. We’ll take things slowly to begin with and build things up a little later.

To add some simple code to the Embedded Project:
1. Open the hardware.h file that is now part of the VideoSpin.PrjEmb project. Observe that an entry for the Port IO

component’s base address has been made.
#define Base_WB_PRTIO_1 0xFF000000
#define Size_WB_PRTIO_1 0x00000001

2. Open the Main.C file and enter the following source code:
#include "hardware.h"

#define LEDS (*(unsigned char*)Base_WB_PRTIO_1)

void main(void)
{
 LEDS = 0x55;
}

3. Compile and download the source code to the TSK3000 processor running on the
Desktop NanoBoard by pressing the icon in the main toolbar. After the program has
been downloaded, you should see the LEDs on the NanoBoard light up with the value
55h.

TU0131 (v2.0) March 20, 2008 15

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Developing the Complete Application
At the beginning of this tutorial we indicated that we would create a complete application that is capable of reading images from
a composite video source and displaying them on the TFT screen of the Desktop NanoBoard. So far we have laid all of the
foundations for this application and all that remains is the final source code. Before we can embark on this, there are a couple
of minor tweaks we’ll do to the embedded project to define different memory sections for the video capture and display memory
respectively.

To create a memory section in the embedded project:
1. With a file from the Embedded Project focused in the main editor, select Project » Project Options or right-click the

VideoSpin.PrjEmb project in the Projects panel and select Project Options.

2. Select the Configure Memory tab and observe that entries for CaptureMem and DisplayMem exist.

3. Select the Sections/Reserved Areas tab of the Options for Embedded Project VideoSpin.PrjEmb dialog.

4. Click the Add Section button.

5. In the Section dialog box:
- Set the Name to .bss.capture

- Set the Location to mem:CaptureMem

6. Click OK to close the Section dialog box and observe that the new memory section has been added.

7. Click the Add Section button again

8. In the Section dialog box:
- Set the Name to .bss.display

- Set the Location to mem:DisplayMem

9. Click OK to close the Section dialog box and observe that the new memory section has been added.

10. Click OK to close the Options for Embedded Project VideoSpin.PrjEmb dialog.

11. With the different memory sections labeled, we can now use this label as a qualifier when we create an array for the video
capture and video display buffers. Open the Main.C file and add the following lines of code:

// Display memory
#pragma section .bss=.display
volatile pixel_t display[TFT_XRES * TFT_YRES];
#pragma endsection

// Capture memory
#pragma section .bss=.capture
volatile pixel_t capture[VIDEO_BUFFER_SIZE];
#pragma endsection

Interacting with the Peripherals
As well as providing a number of high-level peripheral devices, Altium Designer also includes software routines that make
interfacing with those peripherals much simpler. By using the Device Software Framework (DSF), you can skip over having to
deal with low level interfaces and use higher-level control routines.

The DSF system is still under development and some of the documentation is still being produced. But all of the source code
can be found in the System\Tasking\dsf folder under your Altium Designer installation. Figure 21 contains the complete
listing of the Main.C file. It is based on the DSF implementation as of Altium Designer release 6.8.

#define DSF_IMPLEMENT
#include <dsf_system.h>

bt656_context_t capture_settings;
vga_context_t display_settings;

// Resolution of raw video input, for PAL-B/G
#define PALWIDTH 720
#define PALHEIGHT 580 // 625
#define VIDEOWIDTH 450
#define VIDEOHEIGHT 450
#define VIDEO_BUFFER_SIZE (VIDEOWIDTH * VIDEOHEIGHT * sizeof(pixel_t))

16 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

// Video: defines for centering
#define VIDEO_X0 (VIDEOWIDTH / 2)
#define VIDEO_XMIN (VIDEO_X0 - VIDEOWIDTH)
#define VIDEO_XMAX (VIDEOWIDTH - VIDEO_X0)

#define VIDEO_Y0 (VIDEOHEIGHT / 2)
#define VIDEO_YMIN (VIDEO_Y0 - VIDEOHEIGHT)
#define VIDEO_YMAX (VIDEOHEIGHT - VIDEO_Y0)

// TFT type
typedef uint16_t pixel_t;

// Resolution of TFT
#define TFT_XRES 240
#define TFT_YRES 320

// TFT: defines for centering
#define TFT_X0 (TFT_XRES / 2)
#define TFT_XMIN (TFT_X0 - TFT_XRES)
#define TFT_XMAX (TFT_XRES - TFT_X0)

#define TFT_Y0 (TFT_YRES / 2)
#define TFT_YMIN (TFT_Y0 - TFT_YRES)
#define TFT_YMAX (TFT_YRES - TFT_Y0)

bt656_context_t capture_settings;
vga_context_t display_settings;

// Display memory
#pragma section .bss=.display
volatile pixel_t display[TFT_XRES * TFT_YRES];
#pragma endsection
// Capture memory
#pragma section .bss=.capture
volatile pixel_t capture[VIDEO_BUFFER_SIZE];
#pragma endsection

#define PI 3.141592654

#define LEDS (*(unsigned char*)Base_WB_PRTIO_1)

void main(void)
{
 uint32_t line;
 uint32_t pixel;
 pixel_t* inpixel;
 pixel_t* outpixel;
 uint8_t count = 0;

 //Main Processor clock rate
 __clocks_per_sec = 50000000; // Assuming we run at 50 MHz

 //Initialize TFT display
 vga16_init(& display_settings, Base_VideoDisplay, (uintptr_t) display, CLOCKS_PER_SEC,
VGA16_TFT);

 /* I2C */
 i2c_init(Base_I2CM_W_1);

 // Initialize video capture
 bt656_init(& capture_settings, Base_VideoCapture, Base_I2CM_W_1, (void *) capture,
VIDEO_BUFFER_SIZE, BT656_RGB16, BT656_COMP1);
 bt656_set_linesize(& capture_settings, VIDEOWIDTH);
 bt656_set_scale(& capture_settings, 1, 1);
 bt656_set_framerate(& capture_settings, 1);

TU0131 (v2.0) March 20, 2008 17

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

 bt656_set_crop(& capture_settings, (PALWIDTH - VIDEOWIDTH) / 2, (PALHEIGHT - VIDEOHEIGHT) /
2, (PALWIDTH - VIDEOWIDTH) / 2, (PALHEIGHT - VIDEOHEIGHT) / 2);
 bt656_set_buffer(& capture_settings, (uint32_t *) capture, VIDEO_BUFFER_SIZE);
 bt656_set_mode(& capture_settings, BT656_RUN);

 while (1)
 {
 outpixel = display;
 for (line = 0; line < TFT_YRES; line++)
 {
 for (pixel = 0; pixel < TFT_XRES; pixel++)
 {
 *outpixel = capture[(pixel + (VIDEOWIDTH-TFT_XRES)/2) + ((line + (VIDEOHEIGHT-
TFT_YRES)/2) * VIDEOWIDTH)];
 outpixel++;
 }
 }
 LEDS = count++;
 }
}
Figure 21. Completed Video Capture and Display source code

Considering your Deployment Options
Now that we’ve arrived at a functional design, let’s examine how you might deploy your product in the field. Altium provides a
range of deployment NanoBoards that you can either use entirely as an off-the-shelf solution or that you can customize with
your own peripheral boards. Alternatively you can go for a fully custom PCB solution that makes selective use of existing
NanoBoard circuit blocks and combines them together into a single design. The choice of deployment options will be influenced
by a range of factors including cost, time to market, logistics, and form and fit constraints. While we can’t tell you which solution
will be best for your specific situation, we can present the range of options so that you can get a fair indication of their pros and
cons.

Level 1: Development of pure ‘Device Intelligence’
Almost all designs will begin at this level. The focus of development
is around the application software and programmable hardware
using one of the Development NanoBoards such as the Desktop
NanoBoard. Very little regard is given to the hardware platform to be
used in the final implementation and work can rapidly proceed on
proving out and cementing the features of the design. The decision
of how (or if) to deploy the newly created system is independent of
this level of design.

Assuming you intend to deploy your design beyond one of the
Desktop NanoBoard products, you have two degrees of freedom.

1. Hardware Platform – Will you use off-the-shelf (OTS) hardware, create your own, or use a mixture of the two?

2. Enclosure – Will you use an OTS enclosure, create your own from scratch, or modify an existing one?

The following sections discuss how you might work within these degrees of freedom to varying levels.

Level 2: OTS Hardware Platform, OTS Enclosure
This level is the simplest deployment option as it makes use of both an off-the-shelf hardware platform and enclosure. By using
one of Altium’s deployment NanoBoards, you can mix and match different daughter boards and peripheral boards to produce a
customized hardware platform that is tailored to your application. In addition, enclosing the complete NanoBoard in one of
Altium’s supplied cases will ensure a professional appearance of your product and avoids the logistical headaches associated
with manufacturing. Design compatibility ensures you can seamlessly migrate your design from the Desktop NanoBoard to a
complete deployment solution.

18 TU0131 (v2.0) March 20, 2008

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Deploying your designs in this fashion allows you to focus primarily on the device intelligence without being bogged down by
hardware implementation issues. The unique identification system that has been built into the NanoBoard enables it to probe all
connected daughter and peripheral boards and quickly reconfigure the entire design. You can be up and running on your
deployment platform in little more than the time it takes to rerun the FPGA build flow.

Level 3: OTS Hardware Platform, Custom Enclosure
Deploying your design using an OTS deployment NanoBoard inside an enclosure of your own design is an incremental step
from level 2 that can have a dramatic impact on the level of professionalism that you are able to portray to your customers. Use
one of Altium’s mechanical STEP models as the basis for customization or construct a completely new enclosure of your own
design. Either way, you’ll have the ability to tailor the form and fit of your end product to ensure it fits snuggly into its final
environment.

Altium Designer’s 3D bodies allow you to quickly visualize your end product and trap any interference issues that may crop up
between the ECAD and MCAD environments.

Level 4: Mixture of OTS and Custom Hardware Platform, OTS or Custom Enclosure
While Altium is continuously developing more peripheral boards, there still might be occasions when you need to include your
own custom hardware as part of the design. The expandability of the NanoBoards ensures that this is a relatively simple task
and it gives you the best of both worlds. You can selectively customize the hardware platform while still leveraging off the
existing infrastructure that has been designed into the NanoBoard architecture.

As with the previous level, the extent to which you use an existing enclosure or create/customize your own is completely up to
you.

Level 5: Custom Hardware Platform, OTS or Custom Enclosure
This final level requires the greatest amount of hardware development but gives you the greatest flexibility in terms of form and
fit. In particularly cost-conscious applications it may be necessary to rationalize NanoBoard circuitry to only those subsystems
that are absolutely necessary to the design. The design reuse capabilities of Altium Designer makes this process a very quick
and easy task. Because all of the NanoBoard circuits are included as design reuse blocks and installed as part of Altium
Designer, you can link those blocks into your custom hardware design and avoid having to reinvent the wheel. Altium Designer
even includes the part numbers and supplier information of all parts used in the NanoBoards. This makes the process of
procuring parts an absolute breeze.

TU0131 (v2.0) March 20, 2008 19

Capturing Video the Easy Way – Programming FPGAs for flexible, quick applications development

Transferring the Design to a Deployment Platform
The deployment level you choose will have some bearing on how simply you can retarget your design. The NanoBoard
infrastructure includes intelligence that allows it to probe connected daughter boards and peripheral boards and automatically
create a new configuration based on the connected hardware. All hardware supplied by Altium conforms to this standard but if
you are using hardware from a third party or your own custom hardware that does not include this feature then you may need to
perform some configuration steps manually to arrive at the same destination.

There is plenty of help information already available within Altium Designer to assist with the creation of new constraint files and
configurations and so I won’t repeat that content here. But it is sufficient to say that once the new configuration has been
defined, you can be up and running on your deployment platform in little more than the time it takes to rerun the FPGA build
flow.

Why isn’t the Video Image Spinning?
Throughout the development of this tutorial we have used project names such as SpinningVideo and VideoSpin yet the
image that appears on the TFT display remains stationary. The reason for this is because what we have shown you is really
just the beginning of what is possible in Altium Designer. If you’re keen to develop this project to include rapid zoom and
rotation of the video image, then have a look at the Examples\NB2DSK1 Examples\CHC Image Rotation folder in the
Altium Designer installation. While you’re there, you might notice that this example makes use of the new C-to-Hardware
capabilities in Altium Designer…. But that’ll have to wait until another tutorial.

Revision History

Date Version No. Revision

25-Sep-2007 1.0 Initial Release

21-Jan-2008 1.1 Added section on deployment

20-Mar-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:

Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

20 TU0131 (v2.0) March 20, 2008

	What you’ll be creating
	What you’ll need
	Creating the FPGA Project
	Adding source documents to the FPGA Project

	Defining an FPGA system using OpenBus
	Placing OpenBus Components
	Connecting OpenBus Components
	Interconnect and Arbiter Components
	Completing the OpenBus System

	 Configuring OpenBus Components
	Configure Peripheral Components
	Configure Memory Controllers
	Configure Memory Arbiters
	Configure the Processor

	Managing the Memory Map
	Configuring Memory using Interconnect Components
	 Configuring Memory from within the Processor

	Linking the OpenBus Document to its Parent Schematic
	Using the OpenBus Signal Manager
	Creating a sheet symbol from the OpenBus Document
	Wiring up the Top Level Schematic
	Auto-configuring projects running on the Desktop NanoBoard

	Building the FPGA design
	Developing the Embedded Code
	Adding the source code to the Embedded Project
	Linking an Embedded Project to its Target Processor
	Writing some C Source Code

	 Developing the Complete Application
	Interacting with the Peripherals

	Considering your Deployment Options
	Level 1: Development of pure ‘Device Intelligence’
	Level 2: OTS Hardware Platform, OTS Enclosure
	Level 3: OTS Hardware Platform, Custom Enclosure
	Level 4: Mixture of OTS and Custom Hardware Platform, OTS or Custom Enclosure
	Level 5: Custom Hardware Platform, OTS or Custom Enclosure

	Transferring the Design to a Deployment Platform
	Why isn’t the Video Image Spinning?
	Revision History

